Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Article in English | MEDLINE | ID: mdl-38059128

ABSTRACT

Methamphetamine use disorder (MUD) is an illness associated with severe health consequences. Virtual reality (VR) is used to induce the drug-cue reactivity and significant EEG and ECG abnormalities were found in MUD patients. However, whether a link exists between EEG and ECG abnormalities in patients with MUD during exposure to drug cues remains unknown. This is important from the therapeutic viewpoint because different treatment strategies may be applied when EEG abnormalities and ECG irregularities are complications of MUD. We designed a VR system with drug cues and EEG and ECG were recorded during VR exposure. Sixteen patients with MUD and sixteen healthy subjects were recruited. Statistical tests and Pearson correlation were employed to analyze the EEG and ECG. The results showed that, during VR induction, the patients with MUD but not healthy controls showed significant [Formula: see text] and [Formula: see text] power increases when the stimulus materials were most intense. This finding indicated that the stimuli are indiscriminate to healthy controls but meaningful to patients with MUD. Five heart rate variability (HRV) indexes significantly differed between patients and controls, suggesting abnormalities in the reaction of patient's autonomic nervous system. Importantly, significant relations between EEG and HRV indexes changes were only identified in the controls, but not in MUD patients, signifying a disruption of brain-heart relations in patients. Our findings of stimulus-specific EEG changes and the impaired brain-heart relations in patients with MUD shed light on the understanding of drug-cue reactivity and may be used to design diagnostic and/or therapeutic strategies for MUD.


Subject(s)
Methamphetamine , Virtual Reality , Humans , Methamphetamine/adverse effects , Cues , Brain , Heart Rate/physiology
2.
Article in English | MEDLINE | ID: mdl-37022368

ABSTRACT

Early diagnosis and treatment can reduce the symptoms of Attention Deficit/Hyperactivity Disorder (ADHD) in children, but medical diagnosis is usually delayed. Hence, it is important to increase the efficiency of early diagnosis. Previous studies used behavioral and neuronal data during GO/NOGO task to help detect ADHD and the accuracy differed considerably from 53% to 92%, depending on the employed methods and the number of electroencephalogram (EEG) channels. It remains unclear whether data from a few EEG channels can still lead to a good accuracy of detecting ADHD. Here, we hypothesize that introducing distractions into a VR-based GO/NOGO task can augment the detection of ADHD using 6-channel EEG because children with ADHD are easily distracted. Forty-nine ADHD children and 32 typically developing children were recruited. We use a clinically applicable system with EEG to record data. Statistical analysis and machine learning methods were employed to analyze the data. The behavioral results revealed significant differences in task performance when there are distractions. The presence of distractions leads to EEG changes in both groups, indicating immaturity in inhibitory control. Importantly, the distractions additionally enhanced the between-group differences in NOGO α and γ power, reflecting insufficient inhibition in different neural networks for distraction suppression in the ADHD group. Machine learning methods further confirmed that distractions enhance the detection of ADHD with an accuracy of 85.45%. In conclusion, this system can assist in fast screenings for ADHD and the findings of neuronal correlates of distractions can help design therapeutic strategies.

3.
IEEE J Transl Eng Health Med ; 10: 2100811, 2022.
Article in English | MEDLINE | ID: mdl-36457894

ABSTRACT

Virtual reality (VR) has been widely adopted by therapists to provide rich motor training tasks. Time series data of motion trajectory accompanied with the interaction of VR system may contain important clues in regard to the assessment of motor function, however, clinical evaluation scales such as Fugl-Meyer Assessment (FMA), Wolf Motor Function Test (WMFT), and Test D'évaluation Des Membres Supérieurs Des Personnes Âgées (TEMPA) are highly depended in clinic. Further, there is not yet an assessment method that simultaneously consider motion trajectory and clinical evaluation scales. The objective of this study is to establish an evidence-based assessment model by machine-learning method that integrated motion trajectory of a VR task with clinical evaluation scales. In this study, a VR system for upper-limb motor training was proposed for stroke rehabilitation. Clinical trials with 20 stroke patients were performed. A variety of motor indicators that derived via motion trajectory were proposed. The correlations between motor indicators and clinical evaluation scales were examined. Further, motor indicators were integrated with evaluation scales to develop a machine-learning based model that represents an evidence-based motor assessment approach. Clinical evaluation scales, FMA, TEMPA and WMFT, were significantly progressed. A few motor indicators were found significantly correlated with clinical evaluation scales. The accuracy of machine-learning based assessment model was up to 86%. The proposed VR system is validated to be effective in motor rehabilitation. Motor indicators derived from motor trajectory were with potential for clinical motor assessment. Machine learning could be a promising tool to perform automatic assessment. Clinical and Translational Impact Statement-A VR task for motor rehabilitation was exanimated via clinical trials. Integrating motor indices with clinical assessment, a machine-learning model with accuracy of 86% was developed to evaluate motor function.


Subject(s)
Stroke Rehabilitation , Stroke , Virtual Reality , Humans , Upper Extremity , User-Computer Interface
4.
PLoS One ; 17(5): e0268399, 2022.
Article in English | MEDLINE | ID: mdl-35580084

ABSTRACT

Investigating whether landmarks and routes affect navigational efficiency and learning transfer in traffic is essential. In this study, a virtual reality-based driving system was employed to determine the effects of landmarks and routes on human neurocognitive behavior. The participants made four (4) journeys to predetermined destinations. They were provided with different landmarks and routes to aid in reaching their respective destinations. We considered two (2) groups and conducted two (2) sessions per group in this study. Each group had sufficient and insufficient landmarks. We hypothesized that using insufficient landmarks would elicit an increase in psychophysiological activation, such as increased heart rate, eye gaze, and pupil size, which would cause participants to make more errors. Moreover, easy and difficult routes elicited different cognitive workloads. Thus, a high cognitive load would negatively affect the participants when trying to apply the knowledge acquired at the beginning of the exercise. In addition, the navigational efficiency of routes with sufficient landmarks was remarkably higher than that of routes with insufficient landmarks. We evaluated the effects of landmarks and routes by assessing the recorded information of the drivers' pupil size, heart rate, and driving performance data. An analytical strategy, several machine learning algorithms, and data fusion methods have been employed to measure the neurocognitive load of each participant for user classification. The results showed that insufficient landmarks and difficult routes increased pupil size and heart rate, which caused the participants to make more errors. The results also indicated that easy routes with sufficient landmarks were deemed more efficient for navigation, where users' cognitive loads were much lower than those with insufficient landmarks and difficult routes. The high cognitive workload hindered the participants when trying to apply the knowledge acquired at the beginning of the exercise. Meanwhile, the data fusion method achieved higher accuracy than the other classification methods. The results of this study will help improve the use of landmarks and design of driving routes, as well as paving the way to analyze traffic safety using the drivers' cognition and performance data.


Subject(s)
Automobile Driving , Virtual Reality , Cognition , Fixation, Ocular , Humans , User-Computer Interface , Workload
5.
Front Neurol ; 13: 809843, 2022.
Article in English | MEDLINE | ID: mdl-35330805

ABSTRACT

Background: Repetitive transcranial magnetic stimulation (rTMS) has shown promising efficacy in improving the language functions in poststroke aphasia. However, randomized controlled trials were lacking to investigate the rTMS-related neuroimaging changes underlying the therapeutic effects on language improvement in chronic aphasia. Objective: In this study, we aimed to evaluate the effects of low-frequency rTMS (LF-rTMS) on chronic poststroke aphasia. We hypothesized that the deactivation of the right pars triangularis could restore the balance of interhemispheric inhibition and, hence, facilitated the functional remodeling of language networks in both the hemispheres. Furthermore, the rTMS-induced functional reorganization should underpin the language recovery after rTMS. Methods: A total of 33 patients (22 males; age: 58.70 ± 13.77 years) with chronic stroke in the left hemisphere and nonfluent aphasia were recruited in this randomized double-blinded study. The ratio of randomization between the rTMS and sham groups is 17:16. All the patients received real 1-Hz rTMS or sham stimulation (placebo coil delivered < 5% of magnetic output with similar audible click-on discharge) at the right posterior pars triangularis for 10 consecutive weekdays (stroke onset to the first stimulation: 10.97 ± 10.35 months). Functional connectivity of language networks measured by resting-state fMRI was calculated and correlated to the scores of the Concise Chinese Aphasia Test by using the stepwise regression analysis. Results: After LF-rTMS intervention, significant improvement in language functions in terms of comprehension and expression abilities was observed compared with the sham group. The rTMS group showed a significant decrease of coupling strength between right pars triangularis and pars opercularis with a strengthened connection between right pars orbitalis and angular gyrus. Furthermore, the LF-rTMS significantly enhanced the coupling strength associated with left Wernicke area. Results of regression analysis showed that the identified functional remodeling involving both the hemispheres could support and predict the language recovery after LF-rTMS treatment. Conclusion: We reported the therapeutic effects of LF-rTMS and corresponding functional remodeling in chronic poststroke aphasia. Our results provided neuroimage evidence reflecting the rebalance of interhemispheric inhibition induced by LF-rTMS, which could facilitate future research in the refinement of rTMS protocol to optimize the neuromodulation efficacy and benefit the clinical management of patients with stroke.

6.
IEEE J Biomed Health Inform ; 26(7): 3458-3465, 2022 07.
Article in English | MEDLINE | ID: mdl-35226611

ABSTRACT

Methamphetamine use disorder (MUD) is a brain disease that leads to altered regional neuronal activity. Virtual reality (VR) is used to induce the drug cue reactivity. Previous studies reported significant frequency-specific neuronal abnormalities in patients with MUD during VR induction of drug craving. However, whether those patients exhibit neuronal abnormalities after VR induction that could serve as the treatment target remains unclear. Here, we used an integrated VR system for inducing drug related changes and investigated the neuronal abnormalities after VR exposure in patients. Fifteen patients with MUD and ten healthy subjects were recruited and exposed to drug-related VR environments. Resting-state EEG were recorded for 5 minutes twice-before and after VR and transformed to obtain the frequency-specific data. Three self-reported scales for measurement of the anxiety levels and impulsivity of participants were obtained after VR task. Statistical tests and machine learning methods were employed to reveal the differences between patients and healthy subjects. The result showed that patients with MUD and healthy subjects significantly differed in Θ, α, and γ power changes after VR. These neuronal abnormalities in patients were associated with the self-reported behavioral scales, indicating impaired impulse control. Our findings of resting-state EEG abnormalities in patients with MUD after VR exposure have the translational value and can be used to develop the treatment strategies for methamphetamine use disorder.


Subject(s)
Methamphetamine , Virtual Reality , Craving/physiology , Cues , Humans , User-Computer Interface
7.
Article in English | MEDLINE | ID: mdl-34623270

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder. Though it is not yet curable or reversible, research has shown that clinical intervention or intensive cognitive training at an early stage may effectively delay the progress of the disease. As a result, screening populations with mild cognitive impairment (MCI) or early AD via efficient, effective and low-cost cognitive assessments is important. Currently, a cognitive assessment relies mostly on cognitive tests, such as the Mini-Mental State Examination (MMSE) or the Montreal Cognitive Assessment (MoCA), which must be performed by therapists. Also, cognitive functions can be divided into a variety of dimensions, such as memory, attention, executive function, visual spatial and so on. Executive functions (EF), also known as executive control or cognitive control, refer to a set of skills necessary to perform higher-order cognitive processes, including working memory, planning, attention, cognitive flexibility, and inhibitory control. Along with the fast progress of virtual reality (VR) and artificial intelligence (AI), this study proposes an intelligent assessment method aimed at assessing executive functions. Utilizing machine learning to develop an automatic evidence-based assessment model, behavioral information is acquired through performing executive-function tasks in a VR supermarket. Clinical trials were performed individuals with MCI or early AD and six healthy participants. Statistical analysis showed that 45 out of 46 indices derived from behavioral information were found to differ significantly between individuals with neurocognitive disorder and healthy participants. This analysis indicates these indices may be potential bio-markers. Further, machine-learning methods were applied to build classifiers that differentiate between individuals with MCI or early AD and healthy participants. The accuracy of the classifier is up to 100%, demonstrating the derived features from the VR system were highly related to diagnosis of individuals with MCI or early AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Alzheimer Disease/diagnosis , Artificial Intelligence , Cognitive Dysfunction/diagnosis , Humans , Machine Learning , Mental Status and Dementia Tests , Neuropsychological Tests , Supermarkets
8.
IEEE Trans Biomed Eng ; 68(7): 2270-2280, 2021 07.
Article in English | MEDLINE | ID: mdl-33571085

ABSTRACT

Methamphetamine abuse is getting worse amongst the younger population. While there is methadone or buprenorphine harm-reduction treatment for heroin addicts, there is no drug treatment for addicts with methamphetamine use disorder (MUD). Recently, non-medication treatment, such as the cue-elicited craving method integrated with biofeedback, has been widely used. Further, virtual reality (VR) is proposed to simulate an immersive virtual environment for cue-elicited craving in therapy. In this study, we developed a VR system equipped with flavor simulation for the purpose of inducing cravings for MUD patients in therapy. The VR system was integrated with multi-model sensors, such as an electrocardiogram (ECG), galvanic skin response (GSR) and eye tracking to measure various physiological responses from MUD patients in the virtual environment. The goal of the study was to validate the effectiveness of the proposed VR system in inducing the craving of MUD patients via the physiological data. Clinical trials were performed with 20 MUD patients and 11 healthy subjects. VR stimulation was applied to each subject and the physiological data was measured at the time of pre-VR stimulation and post-VR stimulation. A variety of features were extracted from the raw data of heart rate variability (HRV), GSR and eye tracking. The results of statistical analysis found that quite a few features of HRV, GSR and eye tracking had significant differences between pre-VR stimulation and post-VR stimulation in MUD patients but not in healthy subjects. Also, the data of post-VR stimulation showed a significant difference between MUD patients and healthy subjects. Correlation analysis was made and several features between HRV and GSR were found to be correlated. Further, several machine learning methods were applied and showed that the classification accuracy between MUD and healthy subjects at post-VR stimulation attained to 89.8%. In conclusion, the proposed VR system was validated to effectively induce the drug craving in MUD patients.


Subject(s)
Methamphetamine , Virtual Reality , Craving , Cues , Humans , User-Computer Interface
9.
IEEE Trans Neural Syst Rehabil Eng ; 28(9): 1899-1907, 2020 09.
Article in English | MEDLINE | ID: mdl-32746303

ABSTRACT

Attention-deficit/Hyperactivity disorder(ADHD) is a common neurodevelopmental disorder among children. Traditional assessment methods generally rely on behavioral rating scales (BRS) performed by clinicians, and sometimes parents or teachers. However, BRS assessment is time consuming, and the subjective ratings may lead to bias for the evaluation. Therefore, the major purpose of this study was to develop a Virtual Reality (VR) classroom associated with an intelligent assessment model to assist clinicians for the diagnosis of ADHD. In this study, an immersive VR classroom embedded with sustained and selective attention tasks was developed in which visual, audio, and visual-audio hybrid distractions, were triggered while attention tasks were conducted. A clinical experiment with 37 ADHD and 31 healthy subjects was performed. Data from BRS was compared with VR task performance and analyzed by rank-sum tests and Pearson Correlation. Results showed that 23 features out of total 28 were related to distinguish the ADHD and non-ADHD children. Several features of task performance and neuro-behavioral measurements were also correlated with features of the BRSs. Additionally, the machine learning models incorporating task performance and neuro-behavior were used to classify ADHD and non-ADHD children. The mean accuracy for the repeated cross-validation reached to 83.2%, which demonstrated a great potential for our system to provide more help for clinicians on assessment of ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Virtual Reality , Attention Deficit Disorder with Hyperactivity/diagnosis , Child , Humans , Task Performance and Analysis , User-Computer Interface
10.
Front Neurosci ; 14: 548, 2020.
Article in English | MEDLINE | ID: mdl-32655349

ABSTRACT

Stroke is the most common cause of complex disability in Taiwan. After stroke onset, persistent physical practice or exercise in the rehabilitation procedure reorganizes neural assembly for reducing motor deficits, known as neuroplasticity. Neuroimaging literature showed rehabilitative effects specific to the brain networks of the sensorimotor network (SMN) and default-mode network (DMN). However, whether between-network interactions facilitate the neuroplasticity after stroke rehabilitation remains a mystery. Therefore, we conducted the longitudinal assessment protocol of stroke rehabilitation, including three types of clinical evaluations and two types of functional magnetic resonance imaging (fMRI) techniques (resting state and grasp task). Twelve chronic stroke patients completed the rehabilitation protocol for at least 24 h and finished the three-time assessments: before, after rehabilitation, and 1 month after the cessation of rehabilitation. For comparison, age-matched normal controls (NC) underwent the same fMRI evaluation once without repeated measure. Increasing scores of the Fugl-Meyer assessment (FMA) and upper extremity performance test reflected the enhanced motor performances after the stroke rehabilitation process. Analysis of covariance (ANCOVA) results showed that the connections between posterior cingulate cortex (PCC) and iM1 were persistently enhanced in contrast to the pre-rehabilitation condition. The interactions between PCC and SMN were positively associated with motor performances. The enhanced cross-network connectivity facilitates the motor recovery after stroke rehabilitation, but the cross-network interaction was low before the rehabilitation process, similar to the level of NCs. Our findings suggested that cross-network connectivity plays a facilitatory role following the stroke rehabilitation, which can serve as a neurorehabilitative biomarker for future intervention evaluations.

11.
IEEE J Biomed Health Inform ; 24(3): 898-906, 2020 03.
Article in English | MEDLINE | ID: mdl-31180873

ABSTRACT

The dental disease is a common disease for a human. Screening and visual diagnosis that are currently performed in clinics possibly cost a lot in various manners. Along with the progress of the Internet of Things (IoT) and artificial intelligence, the internet-based intelligent system have shown great potential in applying home-based healthcare. Therefore, a smart dental health-IoT system based on intelligent hardware, deep learning, and mobile terminal is proposed in this paper, aiming at exploring the feasibility of its application on in-home dental healthcare. Moreover, a smart dental device is designed and developed in this study to perform the image acquisition of teeth. Based on the data set of 12 600 clinical images collected by the proposed device from 10 private dental clinics, an automatic diagnosis model trained by MASK R-CNN is developed for the detection and classification of 7 different dental diseases including decayed tooth, dental plaque, uorosis, and periodontal disease, with the diagnosis accuracy of them reaching up to 90%, along with high sensitivity and high specificity. Following the one-month test in ten clinics, compared with that last month when the platform was not used, the mean diagnosis time reduces by 37.5% for each patient, helping explain the increase in the number of treated patients by 18.4%. Furthermore, application software (APPs) on mobile terminal for client side and for dentist side are implemented to provide service of pre-examination, consultation, appointment, and evaluation.


Subject(s)
Deep Learning , Dental Health Services , Image Interpretation, Computer-Assisted/methods , Telemedicine , Algorithms , Humans , Internet of Things , Software
12.
JMIR Serious Games ; 8(1): e14548, 2020 Jan 17.
Article in English | MEDLINE | ID: mdl-31804184

ABSTRACT

BACKGROUND: Virtual reality (VR) technologies have been developed to assist education and training. Although recent research suggested that the application of VR led to effective learning and training outcomes, investigations concerning the acceptance of these VR systems are needed to better urge learners and trainees to be active adopters. OBJECTIVE: This study aimed to create a theoretical model to examine how determining factors from relevant theories of technology acceptance can be used to explain the acceptance of a novel VR-assisted mental rotation (MR) training system created by our research team to better understand how to encourage learners to use VR technology to enhance their spatial ability. METHODS: Stereo and interactive MR tasks based on Shepard and Metzler's pencil and paper test for MR ability were created. The participants completed a set of MR tasks using 3D glasses and stereoscopic display and a 6-degree-of-freedom joystick controller. Following task completion, psychometric constructs from theories and previous studies (ie, perceived ease of use, perceived enjoyment, attitude, satisfaction, and behavioral intention to use the system) were used to measure relevant factors influencing behavior intentions. RESULTS: The statistical technique of partial least squares structural equation modeling was applied to analyze the data. The model explained 47.7% of the novel, VR-assisted MR training system's adoption intention, which suggests that the model has moderate explanatory power. Direct and indirect effects were also interpreted. CONCLUSIONS: The findings of this study have both theoretical and practical importance not only for MR training but also for other VR-assisted education. The results can extend current theories from the context of information systems to educational and training technology, specifically for the use of VR-assisted systems and devices. The empirical evidence has practical implications for educators, technology developers, and policy makers regarding MR training.

13.
J Healthc Eng ; 2019: 7681237, 2019.
Article in English | MEDLINE | ID: mdl-31093320

ABSTRACT

Frozen shoulder is a common clinical shoulder condition. Measuring the degree of shoulder joint movement is crucial to the rehabilitation process. Such measurements can be used to evaluate the severity of patients' condition, establish rehabilitation goals and appropriate activity difficulty levels, and understand the effects of rehabilitation. Currently, measurements of the shoulder joint movement degree are typically conducted by therapists using a protractor. However, along with the growth of telerehabilitation, measuring the shoulder joint mobility on patients' own at home will be needed. In this study, wireless inertial sensors were combined with the virtual reality interactive technology to provide an innovative shoulder joint mobility self-measurement system that can enable patients to measure their performance of four shoulder joint movements on their own at home. Pilot clinical trials were conducted with 25 patients to confirm the feasibility of the system. In addition, the results of correlation and differential analyses compared with the results of traditional measurement methods exhibited a high correlation, verifying the accuracy of the proposed system. Moreover, according to interviews with patients, they are confident in their ability to measure shoulder joint mobility themselves.


Subject(s)
Bursitis , Range of Motion, Articular/physiology , Virtual Reality , Wearable Electronic Devices , Bursitis/physiopathology , Bursitis/rehabilitation , Female , Humans , Male , Micro-Electrical-Mechanical Systems , Middle Aged , Pilot Projects , Posture/physiology , Shoulder Joint/physiology
14.
IEEE Trans Neural Syst Rehabil Eng ; 26(7): 1345-1352, 2018 07.
Article in English | MEDLINE | ID: mdl-29985143

ABSTRACT

To explore the effects of virtual reality (VR) and augmented reality (AR) in the treatment of claustrophobia, the potential effects of VR and AR on induced anxiety were investigated in this paper. During the experiment, 34 subjects were randomly selected and distributed in AR and VR scenes in a sequence. The skin conductance and heart rates of the subjects were measured throughout the entire process, and the anxiety scale was used to assess the subjective anxiety when the task in each scene was completed. The results showed the following: (1) AR and VR scenes led to feelings of discomfort, but the subjective anxiety scores obtained in the two scenes were not significantly different; (2) the skin conductance level of the subjects significantly increased from the baseline when the subjects entered the experimental scene but remained active in the two scenes without showing significant difference between the scenes; and (3) the heart rate index significantly increased from the baseline after the subjects entered the scene and then gradually decreased. The heart rates of the subjects significantly increased again when the anxiety-induced event was triggered. However, no significant difference was observed between AR and VR scenes. AR and VR have induced obvious anxiety, which was reflected in the subjective and objective physiological indicators. However, no significant difference was found in the effects of AR and VR on the induced anxiety. Considering the cost of building two scenes and other factors, AR was more suitable for the treatment of claustrophobia than VR.


Subject(s)
Anxiety/psychology , Anxiety/therapy , Reality Therapy/methods , Virtual Reality , Adult , Anxiety/physiopathology , Female , Galvanic Skin Response , Healthy Volunteers , Heart Rate , Humans , Male , Phobic Disorders/physiopathology , Phobic Disorders/psychology , Phobic Disorders/therapy , Young Adult
15.
J Healthc Eng ; 2018: 6357351, 2018.
Article in English | MEDLINE | ID: mdl-30595830

ABSTRACT

Claustrophobia is an anxiety disorder characterized by the fear of enclosed spaces. Although medication treatment can effectively control symptoms, the effects quickly disappear once medication is discontinued. Many studies have shown that combining psychotherapy and medication is more efficacious than solely using medication. However, the weaknesses of the traditional psychotherapy are that it is time-consuming and expensive. Alternatively, vivo exposure therapy is proposed in which anxiety is gradually triggered with stimuli. Targeting claustrophobia is diagnosed using the traditional method, and this study established virtual reality (VR) and augmented reality (AR) environments consistent with claustrophobic characteristics, comparing the two using an experimental process to examine whether VR and AR environments are equally capable of triggering anxiety in participants. This study further analysed the efficacies of VR and AR by measuring changes in participant's heart rates variability (HRV) and examining data from survey questionnaires. HRV results indicated that the proposed VR system and AR system were both able to trigger anxiety. Furthermore, the AR environment produced a stronger experience for the participants and caused physiological reactions more evident than those caused by the VR environment. Regarding the anxiety questionnaire, the participants suggested that their anxiety was significantly higher in the VR environment than in the AR environment.


Subject(s)
Anxiety Disorders/therapy , Heart Rate , Implosive Therapy/instrumentation , Virtual Reality Exposure Therapy , Adolescent , Adult , Anxiety , Computer Simulation , Electrocardiography , Equipment Design , Humans , Implosive Therapy/methods , Phobic Disorders/therapy , Young Adult
16.
J Healthc Eng ; 2017: 9840273, 2017.
Article in English | MEDLINE | ID: mdl-29230275

ABSTRACT

Stroke is a leading cause of long-term disability, and virtual reality- (VR-) based stroke rehabilitation is effective in increasing motivation and the functional performance. Although much of the functional reach and grasp capabilities of the upper extremities were regained, the pinch movement remains impaired following stroke. In this study, we developed a haptic-enhanced VR system to simulate haptic pinch tasks to assist the recovery of upper-extremity fine motor function. We recruited 16 adults with stroke to verify the efficacy of this new VR system. Each patient received 30 min VR training sessions 3 times per week for 8 weeks. Outcome measures, Fugl-Meyer assessment (FMA), Test Evaluant les Membres superieurs des Personnes Agees (TEMPA), Wolf motor function test (WMFT), Box and Block test (BBT), and Jamar grip dynamometer, showed statistically significant progress from pretest to posttest and follow-up, indicating that the proposed system effectively promoted fine motor recovery of function. Additionally, our evidence suggests that this system was also effective under certain challenging conditions such as being in the chronic stroke phase or a coside of lesion and dominant hand (nondominant hand impaired). System usability assessment indicated that the participants strongly intended to continue using this VR-based system in rehabilitation.


Subject(s)
Hand Strength , Outcome Assessment, Health Care , Stroke Rehabilitation/instrumentation , Stroke Rehabilitation/methods , Virtual Reality , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Recovery of Function , User-Computer Interface
17.
J Hand Ther ; 30(1): 89-96, 2017.
Article in English | MEDLINE | ID: mdl-27899222

ABSTRACT

STUDY DESIGN: Cross sectional. INTRODUCTION: Measuring wrist range of motion (ROM) is an essential procedure in hand therapy clinics. PURPOSE OF THE STUDY: To test the reliability and validity of a dynamic ROM assessment, the Camera Wrist Tracker (CWT). METHODS: Wrist flexion and extension ROM of 15 patients with distal radius fractures and 15 matched controls were assessed with the CWT and with a universal goniometer. RESULTS: One-way model intraclass correlation coefficient analysis indicated high test-retest reliability for extension (ICC = 0.92) and moderate reliability for flexion (ICC = 0.49). Standard error for extension was 2.45° and for flexion was 4.07°. Repeated-measures analysis revealed a significant main effect for group; ROM was greater in the control group (F[1, 28] = 47.35; P < .001). The concurrent validity of the CWT was partially supported. CONCLUSION: The results indicate that the CWT may provide highly reliable scores for dynamic wrist extension ROM, and moderately reliable scores for flexion, in people recovering from a distal radius fracture. LEVEL OF EVIDENCE: N/A.


Subject(s)
Arthrometry, Articular , Range of Motion, Articular/physiology , Virtual Reality , Wrist Joint/physiopathology , Case-Control Studies , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Radius Fractures/physiopathology , Reproducibility of Results
18.
Disabil Rehabil ; 39(16): 1601-1606, 2017 08.
Article in English | MEDLINE | ID: mdl-27418422

ABSTRACT

PURPOSES: The purpose of this study was to evaluate a three-dimensional, virtual reality system for vestibular rehabilitation in patients with intractable Ménière's disease and chronic vestibular dysfunction. METHODS: We included 70 patients (36 for study, 34 as control) with a chronic imbalance problem caused by uncompensated Ménière's disease. The virtual reality vestibular rehabilitation comprised four training tasks (modified Cawthorne-Cooksey exercises: eye, head, extension, and coordination exercises) performed in six training sessions (in 4 weeks). Measurements of the task scores and balance parameters obtained at the baseline and after final training sessions were compared. RESULTS: A significant improvement was observed in extension and coordination scores. Patients in the early stages of Ménière's disease had a significantly greater improvement in the center of gravity sway and trajectory excursion in the mediolateral direction than did patients in the late stages of Ménière's disease. Mild functional disability attributable to Ménière's disease was a predictor of improvement in the statokinesigram and maximum trajectory excursion in the anteroposterior direction after rehabilitation. The control group showed no significant improvement in almost all parameters. CONCLUSION: Virtual reality vestibular rehabilitation may be useful in patients with Ménière's disease, particular those in the early stages or having mild functional disability. Implication for rehabilitation Chronic imbalance caused by uncompensated Ménière's disease is an indication for vestibular rehabilitation. The interactive virtual reality video game, when integrated into vestibular rehabilitation exercise protocol, may assist patients who have mild disability Ménière's disease and who cannot benefit from treatment with drugs or surgery. The initial data from this study support the applicability of three-dimensional virtual reality technology in vestibular rehabilitation programs. The technology gives professionals a new tool to guide patients for vestibular rehabilitation exercises through three-dimensional virtual reality video game playing. The virtual reality vestibular exercise game can provide patients a step-wise, interactive, dynamic, three-dimensional, and interesting rehabilitation environment.


Subject(s)
Exercise Therapy/methods , Meniere Disease/rehabilitation , Postural Balance , Vertigo/rehabilitation , Video Games , Virtual Reality Exposure Therapy , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Pilot Projects , Regression Analysis , Single-Blind Method , Taiwan , Treatment Outcome , User-Computer Interface , Vestibular Function Tests
19.
Biomed Res Int ; 2016: 7075464, 2016.
Article in English | MEDLINE | ID: mdl-27642600

ABSTRACT

Objective. This study aims to extract motor ingredients through data mining from wearable sensors in a virtual reality goal-directed shoulder rehabilitation (GDSR) system and to examine their effects toward clinical assessment. Design. A single-group before/after comparison. Setting. Outpatient research hospital. Subjects. 16 patients with frozen shoulder. Interventions. The rehabilitation treatment involved GDSR exercises, hot pack, and interferential therapy. All patients first received hot pack and interferential therapy on the shoulder joints before engaging in the exercises. The GDSR exercise sessions were 40 minutes twice a week for 4 weeks. Main Measures. Clinical assessments included Constant and Murley score, range of motion of the shoulder, and muscle strength of upper arm as main measures. Motor indices from sensor data and task performance were measured as secondary measures. Results. The pre- and posttest results for task performance, motor indices, and the clinical assessments indicated significant improvement for the majority of the assessed items. Correlation analysis between the task performance and clinical assessments revealed significant correlations among a number of items. Stepwise regression analysis showed that task performance effectively predicted the results of several clinical assessment items. Conclusions. The motor ingredients derived from the wearable sensor and task performance are applicable and adequate to examine and predict clinical improvement after GDSR training.


Subject(s)
Bursitis/physiopathology , Bursitis/rehabilitation , Motor Activity , Rehabilitation/instrumentation , User-Computer Interface , Arm/physiopathology , Female , Humans , Male , Middle Aged , Muscle Strength , Range of Motion, Articular , Task Performance and Analysis
20.
Sensors (Basel) ; 15(10): 25628-47, 2015 Oct 09.
Article in English | MEDLINE | ID: mdl-26473857

ABSTRACT

In this paper, we propose a self-organizing feature map-based (SOM) monitoring system which is able to evaluate whether the physiotherapeutic exercise performed by a patient matches the corresponding assigned exercise. It allows patients to be able to perform their physiotherapeutic exercises on their own, but their progress during exercises can be monitored. The performance of the proposed the SOM-based monitoring system is tested on a database consisting of 12 different types of physiotherapeutic exercises. An average 98.8% correct rate was achieved.


Subject(s)
Biosensing Techniques/instrumentation , Exercise Therapy , Monitoring, Physiologic/instrumentation , Algorithms , Databases, Factual , Exercise Therapy/instrumentation , Female , Humans , Male , Motion , Parkinson Disease/rehabilitation , Pattern Recognition, Automated/methods , Posture
SELECTION OF CITATIONS
SEARCH DETAIL
...