Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Diagnostics (Basel) ; 14(2)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38248023

ABSTRACT

Kawasaki disease (KD) occurs in young children, has an unknown etiology, and can cause such life-threatening complications as coronary artery aneurysm. A mouse model using Lactobacillus casei cell wall extract (LCWE) with intraperitoneal injection was established for KD years ago. Histological examination of coronary artery lesions indicated features similar to those of vascular lesions of patients with KD. Since animals must be sacrificed during histological examination, the longitudinal survey of coronary artery lesions (CALs) is difficult. The aim of this study was to survey the vasculitis status of the coronary artery and the carotid artery in a KD mouse model. METHOD: LCWE was intraperitoneally injected into 5-week-old male C57BL/6 mice to induce CALs. We studied the longitudinal status of the carotid and coronary arteries and analyzed the Z-score of coronary artery diameter. RESULTS: Carotid artery wall thickness (day 7) and diameter (day 14) significantly increased in the LCWE group with a dose-dependent effect (p < 0.05). Aortic diameter and wall thickness demonstrated significant increases on day 28 and day 7, respectively (p < 0.05). Carotid artery outer diameter and wall thickness were positively associated with coronary artery diameter on day 28 (p < 0.01). Coronary artery diameter significantly increased in the LCWE group after day 7 (p < 0.05). The percentage of Z > 3.0 indicated was more than 80% in the high-dose LCWE group and 0% in the control group. CONCLUSIONS: This report is the first to use coronary artery Z-score in a mouse model of KD by echocardiography and to find a positive association between carotid artery and coronary artery diameter.

2.
J Cosmet Dermatol ; 23(3): 1055-1065, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37974526

ABSTRACT

BACKGROUND: Cosmetic care products contain a high proportion of water and nutrients. Therefore, preventing bacterial growth is an important issue to ensure product quality and safety. The application of antibacterial natural ingredients derived from plants is considered to have the potential to maintain product quality and reduce the use of chemicals in formulations. Additionally, chemically synthesized antiseptic and antibacterial agents are widely used in the industry at present. However, some preservative ingredients have been reported that may cause skin irritation, redness, allergies, and even dermatitis. AIMS: This study aimed to prepare extract from Camellia oleifera tea seed dregs (CTSD), investigate the antibacterial effects on two pathogenic bacteria and evaluate the product preservative ability. METHODS: Ethanol extraction was prepared and subjected to characterize their triterpenoid contents. The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and minimum biofilm eradication concentration (MBEC) were determined for Pseudomonas aeruginosa and Staphylococcus aureus. The product's stability and preservative qualities, along with its ability to scavenge free radicals through antioxidant activity, were also assessed. RESULTS: The gram-positive S. aureus showed greater susceptibility to the treatment. In additional, CTSD possessed significant free radical scavenging activity in vitro and cultured normal human skin fibroblast CCD-966SK cells under nontoxic concentration. The challenge test and accelerated storage test confirmed the CTSD containing formulated emulsion is eligible for commercialization. CONCLUSIONS: CTSD has the potential to be developed as an alternative agent to control microbial biofilm formation, or can be used as an adjuvant compound for infectious disease control.


Subject(s)
Camellia , Cosmetics , Humans , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Seeds/chemistry , Preservatives, Pharmaceutical/pharmacology , Cosmetics/pharmacology , Biofilms , Plant Extracts/pharmacology , Plant Extracts/chemistry , Microbial Sensitivity Tests
3.
3 Biotech ; 12(12): 341, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36345438

ABSTRACT

The multiple probiotic characteristics of strain TCI904 isolated in this study from natural fermented milk were investigated using a mouse model. TCI904 was identified as Lactobacillus delbrueckii subsp. bulgaricu (LDB), a well-known lactic acid starter bacterium found in yogurt. TCI904 exhibited an outstanding pancreatic lipase inhibition activity among several strains of lactic acid bacteria in vitro. Its in vivo effects were further studied. In a comparison of mice fed a high-fat diet (HFD) and those fed a HFD combined with TCI904 for 9 weeks, differences were observed in various aspects of health, and the adverse effects of a HFD were prevented in the latter group. TCI904 effectively prevented fat and body weight accumulation without reducing food intake; it also modulated innate immunity and increased the level of IgA in feces, reversing the increased blood sugar and insulin levels and attenuated the hyperlipidemia caused by a HFD. Based on biochemical test data, compared with the HFD group, a HFD combined with TCI904 induced significant lowering of insulin resistance indicator, homeostasis model assessment-insulin resistance (HOMA-IR) and atherogenic indices of plasma (AIP), the atherogenic coefficient (AC) and cardiac risk ratio (CRR) and increased the cardioprotective index (CPI). In addition, the administration of TCI904 alleviated mood disorders caused by a HFD. Taking the recommended human dose of TCI904 did not affect the liver or kidney function, indicating that TCI904 has sufficient in vivo safety. Taken together, the results of the present study contributed towards validation of the probiotic benefits of lactic acid starter microflora. Orally taken TCI904 exhibited positive immune- and metabolic-modulating, and anxiolytic properties, especially in HFD-induced obesity. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03356-3.

4.
Molecules ; 27(7)2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35408453

ABSTRACT

(1) Background: The current research intended to obtain functional compounds from agricultural by-products. A functional tea seed flavonoid, kaempferol-3-O-[2-O-ß-d-xylopyranosyl-6-O-α-L-rhanmopyranosyl]-ß-d-glucopyranoside (KXRG), was isolated from tea seed dregs. We further determined its chemical structure and evaluated the protective effects of KXRG against local and systemic inflammation in vivo; (2) Methods: First, cytotoxicity and proinflammatory cytokine release were examined in a cell-culture system. The biological activities of KXRG were investigated in a mouse model of ear edema, and from inflammatory damage to organs as demonstrated by histologic examination, in addition to brain function evaluation using the Y-maze test. Serum biochemical analysis and western blotting were utilized to explore the related cellular factors; (3) Results: KXRG inhibited IL-6 in RAW264.7 cells at a non-toxic concentration. Further experiments confirmed that KXRG exerted a stronger effect than indomethacin in terms of the prevention of 12-O-tetradecanoylphorbol acetate (TPA)-induced ear inflammation in a mouse model. KXRG feeding significantly prevented LPS-induced small intestine, liver, and kidney inflammatory damage, as demonstrated by histologic examination. KXRG also significantly improved LPS-induced cognitive impairments. Serum biochemical analysis showed that KXRG elevated antioxidant capacity and reduced levels of proinflammatory cytokines. Western blotting revealed that KXRG reduced the COX-2 expression induced by LPS in mouse tissues; (4) Conclusions: KXRG can be purified from agricultural waste, and hence it is inexpensive, with large amounts of raw materials available. Thus, KXRG has strong potential for further development as a wide-use anti-systemic inflammation drug to prevent human disease.


Subject(s)
Cognitive Dysfunction , Lipopolysaccharides , Animals , Anti-Inflammatory Agents/therapeutic use , Cognitive Dysfunction/drug therapy , Cytokines/metabolism , Disease Models, Animal , Inflammation/metabolism , Kaempferols , Lipopolysaccharides/adverse effects , Mice , Tea/chemistry
5.
Microbiol Spectr ; 10(1): e0203221, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35196809

ABSTRACT

Taiwanofungus camphoratus mushrooms are a complementary and alternative medicine for hangovers, cancer, hypertension, obesity, diabetes, and inflammation. Though Taiwanofungus camphoratus has attracted considerable biotechnological and pharmacological attention, neither classical genetic nor genomic approaches have been properly established for it. We isolated four sexually competent monokaryons from two T. camphoratus dikaryons used for the commercial cultivation of orange-red (HC1) and milky-white (SN1) mushrooms, respectively. We also sequenced, annotated, and comparatively analyzed high-quality and chromosome-level genome sequences of these four monokaryons. These genomic resources represent a valuable basis for understanding the biology, evolution, and secondary metabolite biosynthesis of this economically important mushrooms. We demonstrate that T. camphoratus has a tetrapolar mating system and that HC1 and SN1 represent two intraspecies isolates displaying karyotypic variation. Compared with several edible mushroom model organisms, T. camphoratus underwent a significant contraction in the gene family and individual gene numbers, most notably for plant, fungal, and bacterial cell-wall-degrading enzymes, explaining why T. camphoratus mushrooms are rare in natural environments, are difficult and time-consuming to artificially cultivate, and are susceptible to fungal and bacterial infections. Our results lay the foundation for an in-depth T. camphoratus study, including precise genetic manipulation, improvements to mushroom fruiting, and synthetic biology applications for producing natural medicinal products. IMPORTANCETaiwanofungus camphoratus (Tc) is a basidiomycete fungus that causes brown heart rot of the aromatic tree Cinnamomum kanehirae. The Tc fruiting bodies have been used to treat hangovers, abdominal pain, diarrhea, hypertension, and other diseases first by aboriginal Taiwanese and later by people in many countries. To establish classical genetic and genomic approaches for this economically important medicinal mushroom, we first isolated and characterized four sexually competent monokaryons from two dikaryons wildly used for commercial production of Tc mushrooms. We applied PacBio single molecule, real-time sequencing technology to determine the near-completed genome sequences of four monokaryons. These telomere-to-telomere and gapless haploid genome sequences reveal all genomic variants needed to be studied and discovered, including centromeres, telomeres, retrotransposons, mating type loci, biosynthetic, and metabolic gene clusters. Substantial interspecies diversities are also discovered between Tc and several other mushroom model organisms, including Agrocybe aegerita, Coprinopsis cinerea, and Schizophyllum commune, and Ganoderma lucidum.


Subject(s)
Chromosomes , Genomics , Polyporales/genetics , Polyporales/metabolism , Whole Genome Sequencing , Agaricales , Basidiomycota , Fruiting Bodies, Fungal/genetics , Humans , Mycelium , Secondary Metabolism/genetics , Sequence Analysis, DNA , Transcriptome
6.
Front Physiol ; 12: 660552, 2021.
Article in English | MEDLINE | ID: mdl-34122132

ABSTRACT

In this study, waste fat from the Chinese soft-shelled turtle (Pelodiscus sinensis) was used as the raw material, and soft-shelled turtle oil (SSTO) was extracted by water heating. Analysis of the fatty acid composition of SSTO revealed that unsaturated fatty acids (UFAs) comprised more than 70% of the oil, of which more than 20% were omega-3 poly-UFAs. DPPH radical scavenging and cellular ROS assays confirmed the reduction of oxidative stress by SSTO. In D-galactose-induced aging rats, SSTO feeding alone or in combination with swimming training resulted in improved memory and physical strength. In addition, SSTO feeding with swimming intervention significantly increased the SOD level and maintained better blood pressure in the aged rats. The serum DHEAS and soleus muscle glycogen level were also highly correlated with SSTO feeding and swimming training. In conclusion, the results of this study demonstrated that SSTO has the potential to be developed into a health food that exerts anti-aging effects, and those effects are stronger when combined with daily swimming exercise.

7.
Anticancer Res ; 40(11): 6345-6354, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33109572

ABSTRACT

BACKGROUND/AIM: The clinical course of acute leukemia is complicated, and it is often necessary to combine or change treatment methods due to the rapid increase and spread of malignant cells. In this study, the potential anti-leukemia activities of prepared garlic essential oil (GEO) and some organosulfur compounds contained therein were examined. MATERIALS AND METHODS: Garlic essential oil component identification by gas chromatography-mass spectrometry (GC-MS). MTT assay evaluated cytotoxicity of tested samples. Leukemia cell differentiation was determined by NBT assay. Apoptosis and related mechanisms were investigated by western blotting. RESULTS: GC-MS analysis confirmed that the two most abundant constituents, diallyl disulfide (DADS) and diallyl trisulfide (DATriS), constituted 80% of the composition. GEO and DADS exhibited the best effects in terms of significant production of intracellular reactive oxygen species (ROS), induction apoptosis and potentiation differentiation of human promyelocytic leukemia cell line HL-60 cells. The GEO-mediated apoptosis was alleviated by the free radical scavenger N-acetyl-L-cysteine (NAC). CONCLUSION: The anti-leukemia activity of GEO and organosulfur compound DADS through the action of ROS elevation was herein confirmed.


Subject(s)
Apoptosis/drug effects , Cell Differentiation/drug effects , Garlic/chemistry , Leukemia, Promyelocytic, Acute/pathology , Oils, Volatile/pharmacology , Sulfur Compounds/pharmacology , HL-60 Cells , Humans , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...