Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Respir Res ; 25(1): 153, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566174

ABSTRACT

BACKGROUND: Wnt/ß-catenin signaling is critical for lung development and AT2 stem cell maintenance in adults, but excessive pathway activation has been associated with pulmonary fibrosis, both in animal models and human diseases such as idiopathic pulmonary fibrosis (IPF). IPF is a detrimental interstitial lung disease, and although two approved drugs limit functional decline, transplantation is the only treatment that extends survival, highlighting the need for regenerative therapies. METHODS: Using our antibody-based platform of Wnt/ß-catenin modulators, we investigated the ability of a pathway antagonist and pathway activators to reduce pulmonary fibrosis in the acute bleomycin model, and we tested the ability of a WNT mimetic to affect alveolar organoid cultures. RESULTS: A WNT mimetic agonist with broad FZD-binding specificity (FZD1,2,5,7,8) potently expanded alveolar organoids. Upon therapeutic dosing, a broad FZD-binding specific Wnt mimetic decreased pulmonary inflammation and fibrosis and increased lung function in the bleomycin model, and it impacted multiple lung cell types in vivo. CONCLUSIONS: Our results highlight the unexpected capacity of a WNT mimetic to effect tissue repair after lung damage and support the continued development of Wnt/ß-catenin pathway modulation for the treatment of pulmonary fibrosis.


Subject(s)
Idiopathic Pulmonary Fibrosis , beta Catenin , Adult , Animals , Humans , beta Catenin/metabolism , Lung/metabolism , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/metabolism , Wnt Signaling Pathway , Bleomycin/toxicity
2.
Cell Chem Biol ; 30(8): 976-986.e5, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37413985

ABSTRACT

WNTs are essential factors for stem cell biology, embryonic development, and for maintaining homeostasis and tissue repair in adults. Difficulties in purifying WNTs and their lack of receptor selectivity have hampered research and regenerative medicine development. While breakthroughs in WNT mimetic development have overcome some of these difficulties, the tools developed so far are incomplete and mimetics alone are often not sufficient. Here, we developed a complete set of WNT mimetic molecules that cover all WNT/ß-catenin-activating Frizzleds (FZDs). We show that FZD1,2,7 stimulate salivary gland expansion in vivo and salivary gland organoid expansion. We further describe the discovery of a novel WNT-modulating platform that combines WNT and RSPO mimetics' effects into one molecule. This set of molecules supports better organoid expansion in various tissues. These WNT-activating platforms can be broadly applied to organoids, pluripotent stem cells, and in vivo research, and serve as bases for future therapeutic development.


Subject(s)
Pluripotent Stem Cells , beta Catenin , beta Catenin/metabolism , Wnt Signaling Pathway
3.
Nat Commun ; 14(1): 2947, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37268690

ABSTRACT

Derangements of the blood-brain barrier (BBB) or blood-retinal barrier (BRB) occur in disorders ranging from stroke, cancer, diabetic retinopathy, and Alzheimer's disease. The Norrin/FZD4/TSPAN12 pathway activates WNT/ß-catenin signaling, which is essential for BBB and BRB function. However, systemic pharmacologic FZD4 stimulation is hindered by obligate palmitoylation and insolubility of native WNTs and suboptimal properties of the FZD4-selective ligand Norrin. Here, we develop L6-F4-2, a non-lipidated, FZD4-specific surrogate which significantly improves subpicomolar affinity versus native Norrin. In Norrin knockout (NdpKO) mice, L6-F4-2 not only potently reverses neonatal retinal angiogenesis deficits, but also restores BRB and BBB function. In adult C57Bl/6J mice, post-stroke systemic delivery of L6-F4-2 strongly reduces BBB permeability, infarction, and edema, while improving neurologic score and capillary pericyte coverage. Our findings reveal systemic efficacy of a bioengineered FZD4-selective WNT surrogate during ischemic BBB dysfunction, with potential applicability to adult CNS disorders characterized by an aberrant blood-brain barrier.


Subject(s)
Blood-Brain Barrier , Frizzled Receptors , Mice , Animals , Blood-Brain Barrier/metabolism , Frizzled Receptors/genetics , Frizzled Receptors/metabolism , Retina/metabolism , Blood-Retinal Barrier/metabolism , Wnt Signaling Pathway
4.
Transl Vis Sci Technol ; 11(9): 19, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36149648

ABSTRACT

Purpose: There remains a high unmet need for therapies with new mechanisms of action to achieve reperfusion of ischemic retina in diabetic retinopathy. We examined whether a novel frizzled class receptor 4 (FZD4) agonist could promote regeneration of functional blood vessels in animal models of retinopathy. Methods: We developed a novel Norrin mimetic (SZN-413-p) targeting FZD4 and low-density lipoprotein receptor-related protein 5 (LRP5) and examined its effect on retinal and brain endothelial cells in vitro. SZN-413-p was subsequently humanized, resulting in the therapeutic candidate SZN-413, and was examined in animal models of retinopathy. In an oxygen-induced retinopathy mouse model, avascular and neovascularization areas were measured. Furthermore, in a vascular endothelial growth factor (VEGF)-induced retinal vascular leakage rabbit model, the impact on vascular leakage by SZN-413 was examined by measuring fluorescein leakage. Results: SZN-413-p induced Wnt/ß-catenin signaling and upregulated blood-brain barrier/blood-retina barrier gene expressions in endothelial cells. In the oxygen-induced retinopathy mouse model, SZN-413-p and SZN-413 significantly reduced the neovascularization area size (P < 0.001) to a level comparable to, or better than the positive control aflibercept. Both agonists also showed a reduction in avascular area size compared to vehicle (P < 0.001) and aflibercept groups (P < 0.05 and P < 0.01 for SZN-413-p and SZN-413, respectively). In the VEGF-induced retinal vascular leakage rabbit model, SZN-413 reduced retinal vascular leakage by ∼80%, compared to the vehicle-treated group (P < 0.01). Conclusions: Reduction of neovascular tufts and avascular areas and of VEGF-driven retinal vascular leakage suggests that SZN-413 can simultaneously address retinal non-perfusion and vascular leakage. Translational Relevance: FZD4 signaling modulation by SZN-413 is a novel mechanism of action that can offer a new therapeutic strategy for diabetic retinopathy.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Animals , Diabetic Retinopathy/drug therapy , Disease Models, Animal , Endothelial Cells/metabolism , Fluoresceins/therapeutic use , Low Density Lipoprotein Receptor-Related Protein-5 , Mice , Neovascularization, Pathologic , Oxygen/therapeutic use , Rabbits , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/therapeutic use , beta Catenin/metabolism , beta Catenin/therapeutic use
5.
Cell Mol Gastroenterol Hepatol ; 14(2): 435-464, 2022.
Article in English | MEDLINE | ID: mdl-35569814

ABSTRACT

BACKGROUND AND AIMS: Current management of inflammatory bowel disease leaves a clear unmet need to treat the severe epithelial damage. Modulation of Wnt signaling might present an opportunity to achieve histological remission and mucosal healing when treating IBD. Exogenous R-spondin, which amplifies Wnt signals by maintaining cell surface expression of Frizzled (Fzd) and low-density lipoprotein receptor-related protein receptors, not only helps repair intestine epithelial damage, but also induces hyperplasia of normal epithelium. Wnt signaling may also be modulated with the recently developed Wnt mimetics, recombinant antibody-based molecules mimicking endogenous Wnts. METHODS: We first compared the epithelial healing effects of RSPO2 and a Wnt mimetic with broad Fzd specificity in an acute dextran sulfate sodium mouse colitis model. Guided by Fzd expression patterns in the colon epithelium, we also examined the effects of Wnt mimetics with subfamily Fzd specificities. RESULTS: In the DSS model, Wnt mimetics repaired damaged colon epithelium and reduced disease activity and inflammation and had no apparent effect on uninjured tissue. We further identified that the FZD5/8 and LRP6 receptor-specific Wnt mimetic, SZN-1326-p, was associated with the robust repair effect. Through a range of approaches including single-cell transcriptome analyses, we demonstrated that SZN-1326-p directly impacted epithelial cells, driving transient expansion of stem and progenitor cells, promoting differentiation of epithelial cells, histologically restoring the damaged epithelium, and secondarily to epithelial repair, reducing inflammation. CONCLUSIONS: It is feasible to design Wnt mimetics such as SZN-1326-p that impact damaged intestine epithelium specifically and restore its physiological functions, an approach that holds promise for treating epithelial damage in inflammatory bowel disease.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Animals , Colitis/chemically induced , Colitis/drug therapy , Disease Models, Animal , Inflammation , Inflammatory Bowel Diseases/pathology , Mice , Regeneration , Wnt Signaling Pathway
6.
Nat Commun ; 12(1): 3247, 2021 05 31.
Article in English | MEDLINE | ID: mdl-34059688

ABSTRACT

The Wnt signaling pathway is intricately connected with bone mass regulation in humans and rodent models. We designed an antibody-based platform that generates potent and selective Wnt mimetics. Using this platform, we engineer bi-specific Wnt mimetics that target Frizzled and low-density lipoprotein receptor-related proteins and evaluate their effects on bone accrual in murine models. These synthetic Wnt agonists induce rapid and robust bone building effects, and correct bone mass deficiency and bone defects in various disease models, including osteoporosis, aging, and long bone fracture. Furthermore, when these Wnt agonists are combined with antiresorptive bisphosphonates or anti-sclerostin antibody therapies, additional bone accrual/maintenance effects are observed compared to monotherapy, which could benefit individuals with severe and/or acute bone-building deficiencies. Our data support the continued development of Wnt mimetics for the treatment of diseases of low bone mineral density, including osteoporosis.


Subject(s)
Bone Density Conservation Agents/pharmacology , Bone Resorption/drug therapy , Femoral Fractures/drug therapy , Osteoporosis, Postmenopausal/drug therapy , Wnt Proteins/agonists , Aged , Aging/physiology , Animals , Bone Density/drug effects , Bone Density/physiology , Bone Density Conservation Agents/therapeutic use , Bone Resorption/physiopathology , Diphosphonates/pharmacology , Diphosphonates/therapeutic use , Disease Models, Animal , Drug Evaluation, Preclinical , Drug Synergism , Drug Therapy, Combination/methods , Female , Femoral Fractures/pathology , Femur/drug effects , Femur/injuries , Femur/pathology , Humans , Mice , Osteoporosis, Postmenopausal/physiopathology , Wnt Signaling Pathway/drug effects , Young Adult
7.
Sci Rep ; 10(1): 13951, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32811902

ABSTRACT

R-spondin (RSPO) proteins amplify Wnt signaling and stimulate regeneration in a variety of tissues. To repair tissue in a tissue-specific manner, tissue-targeted RSPO mimetic molecules are desired. Here, we mutated RSPO (RSPO2 F105R/F109A) to eliminate LGR binding while preserving ZNRF3/RNF43 binding and targeted the mutated RSPO to a liver specific receptor, ASGR1. The resulting bi-specific molecule (αASGR1-RSPO2-RA) enhanced Wnt signaling effectively in vitro, and its activity was limited to ASGR1 expressing cells. Systemic administration of αASGR1-RSPO2-RA in mice specifically upregulated Wnt target genes and stimulated cell proliferation in liver but not intestine (which is more responsive to non-targeted RSPO2) in healthy mice, and improved liver function in diseased mice. These results not only suggest that a tissue-specific RSPO mimetic protein can stimulate regeneration in a cell-specific manner, but also provide a blueprint of how a tissue-specific molecule might be constructed for applications in a broader context.


Subject(s)
Intercellular Signaling Peptides and Proteins/pharmacology , Liver Regeneration/drug effects , Liver Regeneration/physiology , Animals , Asialoglycoprotein Receptor/drug effects , Asialoglycoprotein Receptor/metabolism , Cell Line , Cell Proliferation , Drug Discovery/methods , HEK293 Cells , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/drug effects , Thrombospondins/metabolism , Thrombospondins/therapeutic use , Ubiquitin-Protein Ligases/metabolism , Wnt Signaling Pathway/drug effects , beta Catenin/metabolism
8.
Cell Chem Biol ; 27(5): 598-609.e4, 2020 05 21.
Article in English | MEDLINE | ID: mdl-32220333

ABSTRACT

WNTs regulate myriad biological processes during embryonic development and are key regulators of stem cell function, tissue homeostasis, and injury repair in adults. The creation of WNT-based therapies has been hampered by challenges in developing soluble, potent, and selective WNT molecules. Soluble WNT surrogates have been reported, but they demonstrate relatively weak WNT signaling activity. Here, we describe a platform for potent, selective WNT surrogate generation. We identify multivalent binding to Frizzleds (FZDs) and low-density lipoprotein receptor-related proteins (LRPs) to be a requirement for maximal WNT/ß-catenin activation. Furthermore, we show that recruitment of two different FZDs together with LRP causes efficient signaling. Surrogate WNT targeting either FZD1,2,7 or FZD5,8 induces expansive growth of intestinal organoids. This flexible WNT surrogate platform yields potent agonists with any desired receptor specificity and will be useful for research and therapeutic applications for tissue regeneration.


Subject(s)
Frizzled Receptors/metabolism , Wnt Proteins/metabolism , Wnt Signaling Pathway/drug effects , Animals , Drug Discovery , Intestines/drug effects , Intestines/growth & development , LDL-Receptor Related Proteins/metabolism , Ligands , Mice , Organoids/drug effects , Organoids/growth & development , beta Catenin/metabolism
9.
PLoS One ; 10(6): e0126924, 2015.
Article in English | MEDLINE | ID: mdl-26083576

ABSTRACT

Trefoil factor 3 (TFF3), also called intestinal trefoil factor or Itf, is a 59 amino acid peptide found as a homodimer predominantly along the gastrointestinal tract and in serum. TFF3 expression is elevated during gastrointestinal adenoma progression and has been shown to promote mucosal wound healing. Here we show that in contrast to other trefoil factor family members, TFF1 and TFF2, TFF3 is highly expressed in mouse duodenum, jejunum and ileum and that its expression is regulated by food intake. Overexpression of TFF3 using a recombinant adeno-associated virus (AAV) vector, or daily administration of recombinant TFF3 protein in vivo improved glucose tolerance in a diet-induced obesity mouse model. Body weight, fasting insulin, triglyceride, cholesterol and leptin levels were not affected by TFF3 treatment. Induction of mucinous metaplasia was observed in mice with AAV-mediated TFF3 overexpression, however, no such adverse histological effect was seen after the administration of recombinant TFF3 protein. Altogether these results suggest that the therapeutic potential of targeting TFF3 to treat T2D may be limited.


Subject(s)
Blood Glucose/metabolism , Eating/genetics , Genetic Vectors/adverse effects , Metaplasia/genetics , Mucins/genetics , Obesity/genetics , Animals , Cholesterol/blood , Dependovirus/genetics , Diet, High-Fat , Duodenum/metabolism , Duodenum/pathology , Gene Expression , Gene Expression Regulation , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Glucose Tolerance Test , Humans , Ileum/metabolism , Ileum/pathology , Insulin/blood , Jejunum/metabolism , Jejunum/pathology , Leptin/blood , Male , Metaplasia/etiology , Metaplasia/metabolism , Metaplasia/pathology , Mice , Mucins/administration & dosage , Mucins/metabolism , Obesity/etiology , Obesity/metabolism , Obesity/pathology , Recombinant Proteins/administration & dosage , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Signal Transduction , Trefoil Factor-2 , Trefoil Factor-3 , Triglycerides/blood
10.
Am J Physiol Endocrinol Metab ; 307(12): E1144-52, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25370851

ABSTRACT

Elucidating the role of secreted frizzled-related protein 5 (SFRP5) in metabolism and obesity has been complicated by contradictory findings when knockout mice were used to determine metabolic phenotypes. By overexpressing SFRP5 in obese, prediabetic mice we consistently observed elevated hyperglycemia and glucose intolerance, supporting SFRP5 as a negative regulator of glucose metabolism. Accordingly, Sfrp5 mRNA expression analysis of both epididymal and subcutaneous adipose depots of mice indicated a correlation with obesity. Thus, we generated a monoclonal antibody (mAb) against SFRP5 to ascertain the effect of SFRP5 inhibition in vivo. Congruent with SFRP5 overexpression worsening blood glucose levels and glucose intolerance, anti-SFRP5 mAb therapy improved these phenotypes in vivo. The results from both the overexpression and mAb inhibition studies suggest a role for SFRP5 in glucose metabolism and pancreatic ß-cell function and thus establish the use of an anti-SFRP5 mAb as a potential approach to treat type 2 diabetes.


Subject(s)
Glucose/metabolism , Insulin-Secreting Cells/metabolism , Intercellular Signaling Peptides and Proteins/physiology , Adaptor Proteins, Signal Transducing , Animals , Antibodies, Monoclonal/immunology , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Immunoglobulin G/immunology , Insulin-Secreting Cells/drug effects , Intercellular Signaling Peptides and Proteins/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Obesity/complications , Obesity/genetics , Obesity/metabolism
11.
J Lipid Res ; 55(11): 2370-9, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25258384

ABSTRACT

LDL cholesterol (LDL-C) contributes to coronary heart disease. Proprotein convertase subtilisin/kexin type 9 (PCSK9) increases LDL-C by inhibiting LDL-C clearance. The therapeutic potential for PCSK9 inhibitors is highlighted by the fact that PCSK9 loss-of-function carriers exhibit 15-30% lower circulating LDL-C and a disproportionately lower risk (47-88%) of experiencing a cardiovascular event. Here, we utilized pcsk9(-/-) mice and an anti-PCSK9 antibody to study the role of the LDL receptor (LDLR) and ApoE in PCSK9-mediated regulation of plasma cholesterol and atherosclerotic lesion development. We found that circulating cholesterol and atherosclerotic lesions were minimally modified in pcsk9(-/-) mice on either an LDLR- or ApoE-deficient background. Acute administration of an anti-PCSK9 antibody did not reduce circulating cholesterol in an ApoE-deficient background, but did reduce circulating cholesterol (-45%) and TGs (-36%) in APOE*3Leiden.cholesteryl ester transfer protein (CETP) mice, which contain mouse ApoE, human mutant APOE3*Leiden, and a functional LDLR. Chronic anti-PCSK9 antibody treatment in APOE*3Leiden.CETP mice resulted in a significant reduction in atherosclerotic lesion area (-91%) and reduced lesion complexity. Taken together, these results indicate that both LDLR and ApoE are required for PCSK9 inhibitor-mediated reductions in atherosclerosis, as both are needed to increase hepatic LDLR expression.


Subject(s)
Apolipoproteins E/deficiency , Atherosclerosis/metabolism , Cholesterol/blood , Liver/metabolism , Proprotein Convertases/metabolism , Receptors, LDL/metabolism , Serine Endopeptidases/metabolism , Animals , Antibodies/immunology , Atherosclerosis/blood , Atherosclerosis/enzymology , Atherosclerosis/genetics , Cholesterol Ester Transfer Proteins/metabolism , Female , Gene Knockout Techniques , Humans , Liver/drug effects , Mice , Proprotein Convertase 9 , Proprotein Convertases/deficiency , Proprotein Convertases/genetics , Proprotein Convertases/immunology , Serine Endopeptidases/deficiency , Serine Endopeptidases/genetics , Serine Endopeptidases/immunology
12.
Biochem Biophys Res Commun ; 418(1): 1-5, 2012 Feb 03.
Article in English | MEDLINE | ID: mdl-22155242

ABSTRACT

GPR21 is an orphan G-protein-coupled receptor. We found that mice deficient for the GPR21 gene were resistant to diet-induced obesity. Knockout mice were leaner than their wildtype counterpart, despite that no difference was observed in food intake. No differences were observed in the respiratory exchange rate and thermogenesis. However, knockout mice were more active than wildtype littermates, and this level of activity may be an underlying reason for the difference in energy balance. Mutant mice were more sensitive to insulin than their wildtype control and showed an improved glucose tolerance. Several inflammatory markers MCP-1, CRP and IP-10 were decreased in mutant animals, suggesting that GPR21 may also mediate its effect through anti-inflammatory mechanisms. We found that GPR21 is widely expressed in all tissues, with the highest levels found in the brain and in the spleen. Overall, these findings suggest that GPR21 may play an important role in regulating body weight and glucose metabolism.


Subject(s)
Insulin Resistance/genetics , Insulin/pharmacology , Obesity/genetics , Receptors, G-Protein-Coupled/genetics , Animals , Biomarkers/metabolism , Body Weight/genetics , C-Reactive Protein/metabolism , Chemokine CCL2/metabolism , Chemokine CXCL10/metabolism , Diet/adverse effects , Gene Expression , Glucose/metabolism , Glucose Tolerance Test , Mice , Mice, Knockout , Obesity/etiology , Tissue Distribution
13.
Am J Trop Med Hyg ; 83(1): 69-74, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20595480

ABSTRACT

Severe malaria represents a clinical spectrum of disease. We propose that innate immune inflammatory responses to malaria play key roles in the pathogenesis and clinical outcomes of distinct severe malaria syndromes. To investigate this hypothesis, mice deficient in IRAK4, central to Toll-like receptor (TLR)-mediated signaling, were studied in two experimental models of malaria: Plasmodium berghei (PbA) and Plasmodium chabaudi (PccAS). Irak4(-/-)mice had decreased pro-inflammatory cytokine production during infection in both models. However, animals were relatively protected from PbA-associated symptoms compared with wild-type mice, whereas Irak4(-/-) animals were more susceptible to PccAS-associated disease. These results show that IRAK4-mediated innate immune inflammatory responses play critical roles in divergent clinical outcomes in murine malaria models. As such, integrated approaches, using more than one model, are required to fully understand the parasite/host interactions that characterize severe malaria, and more importantly, to fully assess the effect of adjunctive therapies targeting innate immune responses to malaria.


Subject(s)
Immunity, Innate/immunology , Interleukin-1 Receptor-Associated Kinases/immunology , Malaria, Falciparum/immunology , Malaria/immunology , Toll-Like Receptors/physiology , Animals , Disease Models, Animal , Humans , Interleukin-1 Receptor-Associated Kinases/genetics , Interleukin-1 Receptor-Associated Kinases/physiology , Mice
14.
Circulation ; 120(14): 1401-14, 2009 Oct 06.
Article in English | MEDLINE | ID: mdl-19770394

ABSTRACT

BACKGROUND: The innate immune system greatly contributes to the inflammatory process after myocardial infarction (MI). Interleukin-1 receptor-associated kinase-4 (IRAK-4), downstream of Toll/interleukin-1 receptor signaling, has an essential role in regulating the innate immune response. The present study was designed to determine the mechanism by which IRAK-4 is responsible for the cardiac inflammatory process, which consequently affects left ventricular remodeling after MI. METHODS AND RESULTS: Experimental MI was created in IRAK-4(-/-) and wild-type mice by left coronary ligation. Mice with a targeted deletion of IRAK-4 had an improved survival rate at 4 weeks after MI. IRAK-4(-/-) mice also demonstrated attenuated cardiac dilation and decreased inflammation in the infarcted myocardium, which was associated with less proinflammatory and Th1 cytokine expression mediated by suppression of nuclear factor-kappaB and c-Jun N-terminal kinase activation. IRAK-4(-/-) mice had fewer infiltrations of CD45+ leukocytes and CD11c+ dendritic cells, inhibition of apoptosis, and reduced fibrosis and nitric oxide production. Cardiac dendritic cells in IRAK-4(-/-) mice were relatively immature or functionally naïve after MI in that they demonstrated less cytokine and costimulatory molecule gene expression. Furthermore, IRAK-4(-/-) dendritic cells have less mobilization capacity. Transfer of wild type-derived bone marrow dendritic cells into IRAK-4(-/-) mice for functional dendritic cell reconstitution negated the survival advantage and reduced the cardiac dilation observed with IRAK-4(-/-) mice at 28 days after MI. CONCLUSIONS: Deletion of IRAK-4 has favorable effects on survival and left ventricular remodeling after MI through modification of the host inflammatory process by blunting the detrimental bone marrow dendritic cells mobilization after myocardial ischemia.


Subject(s)
Bone Marrow Cells/physiology , Dendritic Cells/physiology , Interleukin-1 Receptor-Associated Kinases/physiology , Myocardial Infarction/physiopathology , Ventricular Remodeling/physiology , Adoptive Transfer , Animals , Bone Marrow Cells/immunology , Crosses, Genetic , Dendritic Cells/immunology , Disease Models, Animal , Gene Deletion , Interleukin-1 Receptor-Associated Kinases/deficiency , Interleukin-1 Receptor-Associated Kinases/genetics , Macrophages/immunology , Mice , Mice, Knockout , Myocardial Infarction/immunology , Myocardial Infarction/mortality , Neutrophils/immunology , Polymerase Chain Reaction , Survival Rate , T-Lymphocytes/immunology
15.
Curr Top Med Chem ; 9(8): 724-37, 2009.
Article in English | MEDLINE | ID: mdl-19689377

ABSTRACT

Interleukin-1 receptor-associated kinases (IRAKs) are key components in the signal transduction pathways utilized by interleukin-1 receptor (IL-1R), interleukin-18 receptor (IL-18R), and Toll-like receptors (TLRs). Out of four members in the mammalian IRAK family, IRAK-4 is considered to be the "master IRAK", the only family member indispensable for IL-1R/TLR signaling. In humans, mutations resulting in IRAK-4 deficiency have been linked to susceptibility to bacterial infections, especially recurrent pyogenic bacterial infections. Furthermore, knock-in experiments by several groups have clearly demonstrated that IRAK-4 requires its kinase activity for its function. Given the critical role of IRAK-4 in inflammatory processes, modulation of IRAK-4 kinase activity presents an attractive therapeutic approach for the treatment of immune and inflammatory diseases. The recent success in the determination of the 3-dimensional structure of the IRAK-4 kinase domain in complex with inhibitors has facilitated the understanding of the mechanistic role of IRAK-4 in immunity and inflammation as well as the development of specific IRAK-4 kinase inhibitors. In this article, we review the biological function of IRAK-4, the structural characteristics of the kinase domain, and the development of small molecule inhibitors targeting the kinase activity. We also review the key pharmacophores required for several classes of inhibitors as well as important features for optimal protein/inhibitor interactions. Lastly, we summarize how these insights can be translated into strategies to develop potent IRAK-4 inhibitors with desired properties as new anti-inflammatory therapeutic agents.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Inflammation/drug therapy , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Animals , Anti-Inflammatory Agents/therapeutic use , Drug Design , Humans , Interleukin-1 Receptor-Associated Kinases/chemistry , Interleukin-1 Receptor-Associated Kinases/metabolism , Protein Conformation , Protein Kinase Inhibitors/therapeutic use
16.
Apoptosis ; 14(9): 1039-49, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19575295

ABSTRACT

The p53-induced protein with a death domain, PIDD, was identified as a p53 target gene whose main role is to execute apoptosis in a p53-dependent manner. To investigate the physiological role of PIDD in apoptosis, we generated PIDD-deficient mice. Here, we report that, although PIDD expression is inducible upon DNA damage, PIDD-deficient mice undergo apoptosis normally not only in response to DNA damage, but also in response to various p53-independent stress signals and to death receptor (DR) engagement. This indicates that PIDD is not required for DNA damage-, stress-, and DR-induced apoptosis. Also, in the absence of PIDD, both caspase-2 processing and activation occur in response to DNA damage. Our findings demonstrate that PIDD does not play an essential role for all p53-mediated or p53-independent apoptotic pathways.


Subject(s)
Apoptosis , Carrier Proteins/metabolism , DNA Damage , Stress, Physiological , Animals , Caspase 2/metabolism , Death Domain Receptor Signaling Adaptor Proteins , Gene Targeting , In Situ Nick-End Labeling , Mice , Protein Processing, Post-Translational , Signal Transduction , Tumor Suppressor Protein p53/metabolism , Whole-Body Irradiation
17.
J Immunol ; 182(11): 7212-21, 2009 Jun 01.
Article in English | MEDLINE | ID: mdl-19454718

ABSTRACT

TLR stimulation triggers a signaling pathway via MyD88 and IL-1R-associated kinase 4 that is essential for proinflammatory cytokine induction. Although NF-kappaB has been shown to be one of the key transcriptional regulators of these cytokines, evidence suggests that other factors may also be important. In this study, we showed that MyD88-deficient macrophages have defective c-Rel activation, which has been linked to IL-12p40 induction, but not IL-6 or TNF-alpha. We also investigated other transcription factors and showed that C/EBPbeta and C/EBPdelta expression was limited in MyD88- or IL-1R-associated kinase 4-deficient macrophages treated with LPS. Importantly, the absence of both C/EBPbeta and C/EBPdelta resulted in the impaired induction of proinflammatory cytokines stimulated by several TLR ligands. Our results identify c-Rel and C/EBPbeta/delta as important transcription factors in a MyD88-dependent pathway that regulate the induction of proinflammatory cytokines.


Subject(s)
CCAAT-Enhancer-Binding Protein-beta/physiology , CCAAT-Enhancer-Binding Protein-delta/physiology , Cytokines/biosynthesis , Proto-Oncogene Proteins c-rel/physiology , Toll-Like Receptors/immunology , Animals , Cells, Cultured , Inflammation Mediators , Interleukin-1 Receptor-Associated Kinases , Macrophages , Mice , Myeloid Differentiation Factor 88/deficiency , Transcriptional Activation/immunology
18.
J Mol Biol ; 389(3): 495-510, 2009 Jun 12.
Article in English | MEDLINE | ID: mdl-19409903

ABSTRACT

Tumor necrosis factor receptor (TNFR)-associated factor 2 (TRAF2) and TRAF5 are adapter proteins involved in TNFalpha-induced activation of the c-Jun N-terminal kinase and nuclear factor kappaB (NF-kappaB) pathways. Currently, TNFalpha-induced NF-kappaB activation is believed to be impaired in TRAF2 and TRAF5 double knockout (T2/5 DKO) cells. Here, we report instead that T2/5 DKO cells exhibit high basal IkappaB kinase (IKK) activity and elevated expression of NF-kappaB-dependent genes in unstimulated conditions. Although TNFalpha-induced receptor-interacting protein 1 ubiquitination is indeed impaired in T2/5 DKO cells, TNFalpha stimulation further increases IKK activity in these cells, resulting in significantly elevated expression of NF-kappaB target genes to a level higher than that in wild-type cells. Inhibition of NIK in T2/5 DKO cells attenuates basal IKK activity and restores robust TNFalpha-induced IKK activation to a level comparable with that seen in wild-type cells. This suggests that TNFalpha can activate IKK in the absence of TRAF2 and TRAF5 expression and receptor-interacting protein 1 ubiquitination. In addition, both the basal and TNFalpha-induced expression of anti-apoptotic proteins are normal in T2/5 DKO cells, yet these DKO cells remain sensitive to TNFalpha-induced cell death, due to the impaired recruitment of anti-apoptotic proteins to the TNFR1 complex in the absence of TRAF2. Thus, our data demonstrate that TRAF2 negatively regulates basal IKK activity in resting cells and inhibits TNFalpha-induced cell death by recruiting anti-apoptotic proteins to the TNFR1 complex rather than by activating the NF-kappaB pathway.


Subject(s)
I-kappa B Kinase/metabolism , TNF Receptor-Associated Factor 2/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Apoptosis , Cell Line , Gene Knockout Techniques , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , Mice , NF-kappa B/metabolism , TNF Receptor-Associated Factor 2/genetics , TNF Receptor-Associated Factor 5/genetics , Tumor Necrosis Factor-alpha/pharmacology
19.
Proc Natl Acad Sci U S A ; 106(24): 9820-5, 2009 Jun 16.
Article in English | MEDLINE | ID: mdl-19443683

ABSTRACT

Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates serum LDL cholesterol (LDL-C) by interacting with the LDL receptor (LDLR) and is an attractive therapeutic target for LDL-C lowering. We have generated a neutralizing anti-PCSK9 antibody, mAb1, that binds to an epitope on PCSK9 adjacent to the region required for LDLR interaction. In vitro, mAb1 inhibits PCSK9 binding to the LDLR and attenuates PCSK9-mediated reduction in LDLR protein levels, thereby increasing LDL uptake. A combination of mAb1 with a statin increases LDLR levels in HepG2 cells more than either treatment alone. In wild-type mice, mAb1 increases hepatic LDLR protein levels approximately 2-fold and lowers total serum cholesterol by up to 36%: this effect is not observed in LDLR(-/-) mice. In cynomolgus monkeys, a single injection of mAb1 reduces serum LDL-C by 80%, and a significant decrease is maintained for 10 days. We conclude that anti-PCSK9 antibodies may be effective therapeutics for treating hypercholesterolemia.


Subject(s)
Antibodies, Monoclonal/immunology , Cholesterol/blood , Neutralization Tests , Serine Endopeptidases/immunology , Animals , Cholesterol/immunology , Crystallography, X-Ray , Macaca fascicularis , Mice , Mice, Inbred C57BL , Mice, Knockout , Proprotein Convertase 9 , Proprotein Convertases , Receptors, LDL/genetics , Receptors, LDL/physiology
20.
Nat Immunol ; 9(12): 1371-8, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18997794

ABSTRACT

Recent studies suggest that nuclear factor kappaB-inducing kinase (NIK) is suppressed through constitutive proteasome-mediated degradation regulated by TRAF2, TRAF3 and cIAP1 or cIAP2. Here we demonstrated that the degradation of NIK occurs upon assembly of a regulatory complex through TRAF3 recruitment of NIK and TRAF2 recruitment of cIAP1 and cIAP2. In contrast to TRAF2 and TRAF3, cIAP1 and cIAP2 seem to play redundant roles in the degradation of NIK, as inhibition of both cIAPs was required for noncanonical NF-kappaB activation and increased survival and proliferation of primary B lymphocytes. Furthermore, the lethality of TRAF3 deficiency in mice could be rescued by a single NIK gene, highlighting the importance of tightly regulated NIK.


Subject(s)
B-Lymphocytes/immunology , Cell Differentiation/immunology , Inhibitor of Apoptosis Proteins/immunology , NF-kappa B/immunology , TNF Receptor-Associated Factor 2/immunology , TNF Receptor-Associated Factor 3/immunology , Animals , B-Lymphocytes/cytology , Cell Survival , Cells, Cultured , Enzyme Activation/immunology , Immunoblotting , Immunoprecipitation , Inhibitor of Apoptosis Proteins/metabolism , Lymphocyte Activation/immunology , Mice , Mice, Mutant Strains , Mice, Transgenic , NF-kappa B/genetics , NF-kappa B/metabolism , RNA, Small Interfering , TNF Receptor-Associated Factor 2/genetics , TNF Receptor-Associated Factor 2/metabolism , TNF Receptor-Associated Factor 3/genetics , TNF Receptor-Associated Factor 3/metabolism , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...