Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int Immunopharmacol ; 137: 112536, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38909495

ABSTRACT

Microglial activation contributes to the neuropathology of Parkinson's disease (PD). Inhibiting M1 while simultaneously boosting M2 microglia activation may therefore be a potential treatment for PD. Apilarnil (API) is a bee product produced from drone larvae. Recent research has demonstrated the protective effects of API on multiple body systems. Nevertheless, its impact on PD or the microglial M1/M2 pathway has not yet been investigated. Thus, we intended to evaluate the dose-dependent effects of API in rotenone (ROT)-induced PD rat model and explore the role of M1/M2 in mediating its effect. Seventy-two Wistar rats were equally grouped as; control, API, ROT, and groups in which API (200, 400, and 800 mg/kg, p.o.) was given simultaneously with ROT (2 mg/kg, s.c.) for 28 days. The high dose of API (800 mg/kg) showed enhanced motor function, higher expression of tyrosine hydroxylase and dopamine levels, less dopamine turnover and α-synuclein expression, and a better histopathological picture when compared to the ROT group and the lower two doses. API's high dose exerted its neuroprotective effects through abridging the M1 microglial activity, illustrated in the reduced expression of miR-155, Iba-1, CD36, CXCL10, and other pro-inflammatory markers' levels. Inversely, API high dose enhanced M2 microglial activity, witnessed in the elevated expression of miR-124, CD206, Ym1, Fizz1, arginase-1, and other anti-inflammatory indices, in comparison to the diseased group. To conclude, our study revealed a novel neuroprotective impact for API against experimentally induced PD, where the high dose showed the highest protection via rebalancing M1/M2 polarization.


Subject(s)
MicroRNAs , Microglia , Neuroprotective Agents , Rats, Wistar , Rotenone , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Microglia/drug effects , Microglia/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Male , Rats , Disease Models, Animal , Dopamine/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Parkinson Disease, Secondary/chemically induced , Parkinson Disease, Secondary/drug therapy , Parkinson Disease, Secondary/metabolism , Parkinson Disease, Secondary/pathology , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Tyrosine 3-Monooxygenase/metabolism , Tyrosine 3-Monooxygenase/genetics
2.
Front Oncol ; 11: 783231, 2021.
Article in English | MEDLINE | ID: mdl-34900737

ABSTRACT

BACKGROUND: Cachexia is a frequent syndrome in pancreatic and non-small cell lung (NSCL) cancer patients. The storm of cancer-induced inflammatory cytokines, in particular TNF-α, is a crucial pathogenic mechanism. Among the molecular alterations accused of cancer-induced cachexia, TNF-α 308 G/A (rs1800629) and -1031T/C (rs1799964) are single-nucleotide polymorphisms (SNPs) within the gene encoding this pro-inflammatory cytokine. Recent studies have demonstrated the crucial role of non-coding microRNAs (miRNAs) in pathogenesis of different diseases including cachexia. Moreover, the mechanistic cytokine signaling pathway of miR-155, as a TNF-α regulator, supports the involvement of SOCS1, TAB2, and Foxp3, which are direct targets of TNF-α gene. AIM: A case-control study (NCT04131478) was conducted primarily to determine the incidence of TNF-α 308 G/A (rs1800629) and -1031T/C (rs1799964) gene polymorphisms in adult Egyptian patients with local/advanced or metastatic pancreatic or NSCL cancer and investigate both as cachexia risk factors. The association of gene polymorphism with cachexia severity and the expression of miR-155 in cachectic patients were analyzed. A mechanistic investigation of the cytokine signaling pathway, involving SOCS1, TAB2, and Foxp3, was also performed. RESULTS: In both pancreatic and NSCL cancer cohorts, the mutant TNF-α variant of 308 G/A was positively associated with cachexia; on the contrary, that of 1031T/C was negatively associated with cachexia in the NSCL cancer patients. MiR-155 was higher in cachexia and in alignment with its severity in the cachectic group as compared with the non-cachectic group in both the pancreatic and NSCL cancer patients. Though TAB2 did not change to any significant extent in cachectic patients, the levels of SOCS1 and Foxp3 were significantly lower in the cachectic group as compared with the non-cachectic group. CONCLUSION: Carriers of the A allele 308 G/A gene and high miR-155 are at greater risk of cachexia in both the pancreatic and NSCL cancer patients; however, the mutant variant of 1031T/C gene is protective against cachexia in the NSCL cancer patients. Finally, high levels of miR-155 in the cachectic group lead to negative feedback inhibition of both SOCS1 and Foxp3 in both the pancreatic and NSCL cancer patients.

3.
Toxicol Appl Pharmacol ; 365: 41-50, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30592963

ABSTRACT

BACKGROUND: Chemotherapy-induced peripheral neuropathy is a common side effect afflicting cancer patients treated with oxalipatin based chemotherapy. AIM: The study investigated the potential prophylactic effect of L-carnosine against acute oxaliplatin neurotoxicity in colorectal cancer patients with emphasis on the redox (Nrf-2, MDA), inflammatory (NF-κB, TNF-α), and apoptotic (caspase-3) parameters. METHODS: In this pilot study, 65 patients were recruited using a prospective randomized controlled study design and enrolled randomly into two arms; Arm A, 31 patients received FOLFOX-6 regimen (oxaliplatin, 5FU & leucovorin) and Arm B, 34 patients received FOLFOX-6 regimen and daily oral L-carnosine (500 mg) along the treatment period. Patients were followed up for three months, then both arms were analyzed for neuropathy incidence/grade and any additional toxicities according to National Cancer Institute Common Terminology Criteria for Adverse Events (NCI-CTC version 4). RESULTS: The neuropathy grading evaluation of Arm B vs Arm A revealed that 17 patients (56.7%) vs 11 patients (35.5%) suffered grade 1, one patient (3.3%) vs 19 patients (61.3%) suffered grade 2, while 12 patients (40%) vs one patient (3.2%) were normal. In arm B, the addition of L-carnosine decreased significantly the levels/activity of NF-κB (27%) and TNF-α (36.6%); this anti-inflammatory effect entailed also its anti-oxidative and anti-apoptotic effects, thus MDA level (51.8%) and caspase-3 activity (49%) were also reduced, whereas Nrf-2 was increased (38.7%) as compared to Arm A. In both arms a significant correlation was only evident between TNF-α and the neuropathy grading score (P < .03); the correlation analysis was significantly positive between NF-κB and both Nrf-2 and caspase 3. CONCLUSION: L-Carnosine exerted a neuroprotective effect against oxaliplatin-induced peripheral neuropathy in colorectal cancer patients by targeting Nrf-2 and NF-κB pathways.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carnosine/therapeutic use , Colorectal Neoplasms/drug therapy , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Neuroprotective Agents/therapeutic use , Oxaliplatin/therapeutic use , Peripheral Nerves/drug effects , Peripheral Nervous System Diseases/prevention & control , Adult , Aged , Anti-Inflammatory Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antioxidants/therapeutic use , Apoptosis/drug effects , Carnosine/adverse effects , Caspase 3/metabolism , Egypt , Female , Fluorouracil/adverse effects , Fluorouracil/therapeutic use , Humans , Leucovorin/adverse effects , Leucovorin/therapeutic use , Male , Malondialdehyde/metabolism , Middle Aged , Neuroprotective Agents/adverse effects , Organoplatinum Compounds/adverse effects , Organoplatinum Compounds/therapeutic use , Oxaliplatin/adverse effects , Peripheral Nerves/metabolism , Peripheral Nerves/pathology , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/metabolism , Peripheral Nervous System Diseases/pathology , Pilot Projects , Prospective Studies , Signal Transduction/drug effects , Time Factors , Treatment Outcome , Tumor Necrosis Factor-alpha/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...