Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Min Eng ; 70(11): 45-51, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30573922

ABSTRACT

Canopy air curtains on roof bolting machines have been proven to protect miners from respirable dust, preventing their overexposure to dust. Another desired application for canopy air curtains is in the compartments of shuttle cars. The challenges faced in developing the design of canopy air curtains for shuttle cars include mine ventilation rates in tandem with the shuttle car tram speeds. The resulting cab airspeeds may exceed 182 m/min (600 fpm), as found in the present study conducted in a central Appalachian underground coal mine by U.S. National Institute for Occupational Safety and Health (NIOSH) researchers. Prior research and laboratory testing had indicated that successfully protecting a miner in high air velocities is difficult, because the clean air from the canopy air curtain is unable to penetrate through the high-velocity mine air. In this study, the dust concentrations to which a shuttle car operator was exposed were measured, and air velocities experienced by the operator were measured as well using a recording vane anemometer. The results indicate that the highest exposure to respirable dust, 2.22 mg/m3, occurred when the shuttle car was loading at the continuous miner, where the average airspeed was 48 m/min (157 fpm). While tramming, the operator was exposed to 0.77 mg/m3 of respirable dust with an average airspeed of 62 m/min (203 fpm). This study indicates that a canopy air curtain system can be designed to greatly reduce an operator's exposure to respirable dust by providing clean air to the operator, as the majority of the operator's dust exposure occurs in air velocities slower than 61 m/min (200 fpm).

2.
Int J Coal Sci Technol ; 10: 1007, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30294491

ABSTRACT

Canopy air curtain (CAC) technology has been developed by the National Institute for Occupational Safety and Health (NIOSH) for use on continuous miners and subsequently roof bolting machines in underground coal mines to protect operators of these machines from overexposure to respirable coal mine dust. The next logical progression is to develop a CAC for shuttle cars to protect operators from the same overexposures. NIOSH awarded a contract to Marshall University and J.H. Fletcher to develop the shuttle car CAC. NIOSH conducted laboratory testing to determine the dust control efficiency of the shuttle car CAC. Testing was conducted on two different cab configurations: a center drive similar to that on a Joy 10SC32AA cab model and an end drive similar to that on a Joy 10SC32AB cab model. Three different ventilation velocities were tested-0.61, 2.0, 4.3 m/s (120, 400, and 850 fpm). The lowest, 0.61 m/s (120 fpm), represented the ventilation velocity encountered during loading by the continuous miner, while the 4.3 m/s (850 fpm) velocity represented ventilation velocity airflow over the shuttle car while tramming against ventilation airflow. Test results showed an average of the dust control efficiencies ranging from 74 to 83% for 0.61 m/s (120 fpm), 39%-43% for 2.0 m/s (400 fpm), and 6%-16% for 4.3 m/s (850 fpm). Incorporating an airflow spoiler to the shuttle car CAC design and placing the CAC so that it is located 22.86 cm (9 in.) forward of the operator improved the dust control efficiency to 51%-55% for 4.3 m/s (850 fpm) with minimal impact on dust control efficiencies for lower ventilation velocities. These laboratory tests demonstrate that the newly developed shuttle car CAC has the potential to successfully protect shuttle car operators from coal mine respirable dust overexposures.

SELECTION OF CITATIONS
SEARCH DETAIL
...