Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 293: 122155, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31561979

ABSTRACT

Crude glycerol (CG) is a by-product formed during the trans-esterification reaction for biodiesel production. Although crude glycerol is considered a waste stream of the biodiesel industry, it can replace expensive carbon substrates required for lipid production by oleaginous micro-organisms. However, crude glycerol has several impurities, such as methanol, soap, triglycerides, fatty acids, salts and metals, which are created during the trans-esterification process and may affect the cellular metabolism involved in lipid synthesis. This review aims to critically present a variation in crude glycerol composition depending on trans-esterification process and impact of impurities present in the crude glycerol on the cell growth and lipid accumulation by oleaginous microbes. This study also draws comparison between purified and crude glycerol for lipid production. Several techniques for crude glycerol purification (chemical treatment, thermal treatment, membrane technology, ion-exchange chromatography and adsorption) have been presented and discussed with reference to cost and environmental effects.


Subject(s)
Carbon , Glycerol , Biofuels , Fatty Acids , Lipids
2.
Bioresour Technol ; 272: 379-388, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30384213

ABSTRACT

Biodiesel production using microbial oil is a promising technology. The main aim of this study is to check practical feasibility (in terms of energy balance) of different biodiesel production processes. Mass and energy balance of biodiesel production have been performed for 3 separate processes: (1) microbial lipid production from T. oleaginosus using waste substrates followed by INRS downstream process (2) microbial lipid production from pure substrate using R. toruloides followed by traditional and INRS downstream process and 3) oil extraction from scum and conversion to biodiesel. It was found that employing waste substrates like crude glycerol and municipal sludge in fermentation reduced the energy input by 50%. While employing biodegradable surfactants and petroleum-diesel as solvent (PD) for lipid extraction and recovery significantly reduced the energy input at cell wall disruption step. Biodiesel production from scum is a two-step process which is fast and energetically favorable.


Subject(s)
Biofuels/microbiology , Oils/metabolism , Fermentation , Glycerol/metabolism , Sewage , Solvents
3.
Bioresour Technol ; 256: 515-528, 2018 May.
Article in English | MEDLINE | ID: mdl-29472122

ABSTRACT

With increasing global population and depleting resources, there is an apparent demand for radical unprecedented innovation to satisfy the basal needs of lives. Hence, non-conventional renewable energy resources like biodiesel have been worked out in past few decades. Biofuel (e.g. Biodiesel) serves to be the most sustainable answer to solve "food vs. fuel crisis". In biorefinery process, lipid extraction from oleaginous microbial lipids is an integral part as it facilitates the release of fatty acids. Direct lipid extraction from wet cell-biomass is favorable in comparison to dry-cell biomass because it eliminates the application of expensive dehydration. However, this process is not commercialized yet, instead, it requires intensive research and development in order to establish robust approaches for lipid extraction that can be practically applied on an industrial scale. This review aims for the critical presentation on cell disruption, lipid recovery and purification to support extraction from wet cell-biomass for an efficient transesterification.


Subject(s)
Biofuels , Lipids , Biomass , Esterification , Fatty Acids , Microalgae
4.
Bioresour Technol ; 224: 365-372, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27866805

ABSTRACT

In situ transesterification of oleaginous yeast wet biomass for fatty acid methyl esters (FAMEs) production using acid catalyst, methanol with or without N-Lauroyl sarcosine (N-LS) treatment was performed. The maximum FAMEs yield obtained with or without N-LS treatment in 24h reaction time was 96.1±1.9 and 71±1.4% w/w, respectively. The N-LS treatment of biomass followed by with or without ultrasonication revealed maximum FAMEs yield of 94.3±1.9% and 82.9±1.8% w/w using methanol to lipid molar ratio 360:1 and catalyst concentration 360mM (64µL H2SO4/g lipid) within 5 and 25min reaction time, respectively. The FAMEs composition obtained in in situ transesterification was similar to that obtained with conventional two step lipid extraction and transesterification process. Biodiesel fuel properties (density, kinematic viscosity, cetane number and total glycerol) were in accordance with international standard (ASTM D6751), which suggests the suitability of biodiesel as a fuel.


Subject(s)
Biofuels , Biomass , Biotechnology/methods , Detergents/pharmacology , Saccharomyces cerevisiae/metabolism , Ultrasonics/methods , Water/chemistry , Esterification/drug effects , Esters/metabolism , Lipids/isolation & purification , Saccharomyces cerevisiae/drug effects , Sarcosine/pharmacology , Sulfuric Acids/pharmacology , Time Factors
5.
Bioresour Technol ; 218: 667-73, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27416517

ABSTRACT

The lipid extraction from the microbial biomass is a tedious and high cost dependent process. In the present study, detergent assisted lipids extraction from the culture of the yeast Yarrowia lipolytica SKY-7 was carried out. Response surface methodology (RSM) was used to investigate the effect of three principle parameters (N-LS concentration, time and temperature) on microbial lipid extraction efficiency % (w/w). The results obtained by statistical analysis showed that the quadratic model fits in all cases. Maximum lipid recovery of 95.3±0.3% w/w was obtained at the optimum level of process variables [N-LS concentration 24.42mg (equal to 48mgN-LS/g dry biomass), treatment time 8.8min and reaction temperature 30.2°C]. Whereas the conventional chloroform and methanol extraction to achieve total lipid recovery required 12h at 60°C. The study confirmed that oleaginous yeast biomass treatment with N-lauroyl sarcosine would be a promising approach for industrial scale microbial lipid recovery.


Subject(s)
Biofuels , Detergents/chemistry , Lipids/isolation & purification , Yarrowia/chemistry , Biomass , Methanol , Models, Statistical , Sarcosine/analogs & derivatives , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...