Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
F1000Res ; 12: 228, 2023.
Article in English | MEDLINE | ID: mdl-37089132

ABSTRACT

Background: Dental caries is a major non-communicable disease of public health concern caused due to freely available dietary sugars. We aimed to compare the sugar content and erosive potential with duration of use and drug classes of orodispersible tablets (ODTs).  Methods: We conducted an  in vitro evaluation of the total sugar content (TSC), Potential of Hydrogen (pH), solubility, and Titratable Acidity (TA) of commonly prescribed 62 ODTs. TA was measured by titrating the samples with known amount of. 0.1N sodium hydroxide (NaOH) with phenolphthalein indicator and pH was determined by digital pH meter. TSC was evaluated by phenol sulphuric acid. Solubility was assessed by filtration.  Results: Out of the 62 ODTs, majority were Antimicrobials (n=30). One-quarter of the ODTs (26%) had a mean pH below ≤5.5. No significant difference was seen in the mean pH with respect to different drug classes (p=0.082) and duration of use of ODTs. A significant difference was seen in the mean percentage solubility with respect to drug classes (p<0.001). Antimicrobials had the least percentage of solubility as compared to other drug classes. Antiemetics and proton pump inhibitors (24.33 ± 17.34) had significantly higher mean percentage sugar content than Antimicrobials (23.25 ± 17.16). No significant difference was seen in the mean TSC with respect to various drug classes (p=0.718) and between the duration of use of drugs (P=0.568) respectively. No significant difference was seen in the mean percentage TA with respect to drug class (p=0.123) and duration of use of drugs (p=0.424).   Conclusion: Overall, we can conclude that one in four ODT formulations had a pH below 5.5 (critical pH).  Only one ODT formulation did not have a sugar content. No difference was seen in the mean pH, sugar content, and TA with respect to duration of use of drugs and drug classes.


Subject(s)
Dental Caries , Sugars , Humans , Tablets , Solubility
2.
J Biochem ; 173(5): 353-373, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-36611219

ABSTRACT

This study attempts to identify the significant role played by the secondary and tertiary structure of collagen-derived peptides that are involved in lipid peroxide quenching in food products. Fish collagen hydrolysate (CH) was extracted with an efficiency of 70%. The constituent peptides of CH (8.2-9.7 kDa) existed in a polyproline-II (PP-II) conformation and at a minimum concentration of 1 mg ml-1 and pH range 7 to 8, assembled into a stable, hierarchical, quasi-fibrillar (QF) network. The peroxide quenching activity of this QF-CH increased with increasing ionic stability of the assembly and decreased upon proteolytic dismantling. Upon being used as an additive, the QF-CH reduced peroxide formation by 84.5% to 98.9% in both plant and fish-based oil and increased the shelf life of soya oil by a factor of 5 after 6 months of storage. The addition of QF-CH to cultured cells quenched peroxide ions generated in situ and decreased stressor activity by a factor of 12.16 abundant peptides were identified from the CH. The reason behind the high efficacy displayed by CH was attributed to its unique charge distribution, prevalence of proton-donating amino acid residues and proximal charge delocalization by the QF network, making fish derived CH a suitable substitute for antiperoxide agents in lipid-rich food.


Subject(s)
Peptides , Urinary Bladder , Animals , Urinary Bladder/metabolism , Peptides/pharmacology , Peptides/chemistry , Collagen/chemistry , Peroxides , Lipids
3.
J Biochem ; 173(3): 197-224, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36494197

ABSTRACT

Catla collagen hydrolysate (CH) was fractionated by chromatography and each fraction was subjected to HA nucleation, with the resultant HA-fraction composites being scored based on the structural and functional group of the HA formed. The process was repeated till a single peptide with augmented HA nucleation capacity was obtained. The peptide (4.6 kDa), exhibited high solubility, existed in polyproline-II conformation and displayed a dynamic yet stable hierarchical self-assembling property. The 3D modelling of the peptide revealed multiple calcium and phosphate binding sites and a high propensity to self-assemble. Structural analysis of the peptide-HA crystals revealed characteristic diffraction planes of HA with mineralization following the (002) plane, retention of the self-assembled hierarchy of the peptide and intense ionic interactions between carboxyl groups and calcium. The peptide-HA composite crystals were mostly of 25-40 nm dimensions and displayed 79% mineralization, 92% crystallinity, 39.25% porosity, 12GPa Young's modulus and enhanced stability in physiological pH. Cells grown on peptide-HA depicted faster proliferation rates and higher levels of osteogenic markers. It was concluded that the prerequisite for HA nucleation by a peptide included: a conserved sequence with a unique charge topology allowing calcium chelation and its ability to form a dynamic self-assembled hierarchy for crystal propagation.


Subject(s)
Durapatite , Nanoparticles , Durapatite/chemistry , Calcium , Collagen/chemistry , Peptides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...