Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 11(2): e2305065, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37922524

ABSTRACT

Ion transport in crystalline solids is an essential process for many electrochemical energy converters such as solid-state batteries and fuel cells. Empirical data have shown that ion transport in crystal lattices obeys the Meyer-Neldel Rule (MNR). For similar, closely related materials, when the material properties are changed by doping or by strain, the measured ionic conductivities showing different activation energies intersect on the Arrhenius plot, at an isokinetic temperature. Therefore, the isokinetic temperature is a critical parameter for improving the ionic conductivity. However, a comprehensive understanding of the fundamental mechanism of MNR in ion transport is lacking. Here the physical significance and applicability of MNR is discussed, that is, of activation entropy-enthalpy compensation, in crystalline fast ionic conductors, and the methods for determining the isokinetic temperature. Lattice vibrations provide the excitation energy for the ions to overcome the activation barrier. The multi-excitation entropy model suggests that isokinetic temperature can be tuned by modulating the excitation phonon frequency. The relationship between isokinetic temperature and isokinetic prefactor can provide information concerning conductivity mechanisms. The need to effectively determine the isokinetic temperature for accelerating the design of new fast ionic conductors with high conductivity is highlighted.

2.
Nanomaterials (Basel) ; 11(12)2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34947563

ABSTRACT

A consideration of the antibacterial efficacy of metal-based nanoparticles, from the point of view of their physicochemical properties, suggests that such efficacy arises from the protein coronas that form around them, and that the contents of the coronas depend on the chemical groups found on the nanoparticle surfaces. We offer a new perspective and new insights, making use of our earlier observations of the physicochemical properties of nanoparticle surfaces, to propose that the nanoparticle serves as a mediator for the formation and activation of the protein corona, which attacks the bacterium. That is, the nanoparticle enhances the body's natural defenses, using proteins present in body fluids.

3.
Chimia (Aarau) ; 73(11): 936-942, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31753075

ABSTRACT

Electric charge transport is an essential process for all electrical and electrochemical energy systems, including inanimate and animate matter. In this issue on materials for energy conversion, we compare and discuss the role of electron holes and protons as charge carriers in solids. Specifically we outline how the temperature or thermal bath affect the charge carrier concentration and mobility for some metal oxides with the perovskite structure. The frequent observation that the conductivity becomes independent of the activation energy at the isokinetic temperature, known as the Meyer-Neldel rule, is an important aspect of our interpretation of the physical mechanism of conduction by polaron hopping.

4.
J Am Chem Soc ; 128(38): 12352-3, 2006 Sep 27.
Article in English | MEDLINE | ID: mdl-16984150

ABSTRACT

Nanoring and nanocone arrays were prepared by conical openings of nanopores in as-prepared AAO film as a mold.

SELECTION OF CITATIONS
SEARCH DETAIL
...