Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Can Commun Dis Rep ; 45(5): 119-126, 2019 May 02.
Article in English | MEDLINE | ID: mdl-31285702

ABSTRACT

A new generation of surveillance strategies is being developed to help detect emerging infections and to identify the increased risks of infectious disease outbreaks that are expected to occur with climate change. These surveillance strategies include event-based surveillance (EBS) systems and risk modelling. The EBS systems use open-source internet data, such as media reports, official reports, and social media (such as Twitter) to detect evidence of an emerging threat, and can be used in conjunction with conventional surveillance systems to enhance early warning of public health threats. More recently, EBS systems include artificial intelligence applications such machine learning and natural language processing to increase the speed, capacity and accuracy of filtering, classifying and analysing health-related internet data. Risk modelling uses statistical and mathematical methods to assess the severity of disease emergence and spread given factors about the host (e.g. number of reported cases), pathogen (e.g. pathogenicity) and environment (e.g. climate suitability for reservoir populations). The types of data in these models are expanding to include health-related information from open-source internet data and information on mobility patterns of humans and goods. This information is helping to identify susceptible populations and predict the pathways from which infections might spread into new areas and new countries. As a powerful addition to traditional surveillance strategies that identify what has already happened, it is anticipated that EBS systems and risk modelling will increasingly be used to inform public health actions to prevent, detect and mitigate the climate change increases in infectious diseases.

2.
J Environ Manage ; 150: 367-377, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25560653

ABSTRACT

In pest risk assessment it is frequently necessary to make time-critical decisions regarding management of expanding pest populations. When an invasive pest outbreak is expanding rapidly, preemptive quarantine of areas that are under imminent threat of infestation is one of only a few available management tools that can be implemented quickly to help control the expansion. The preemptive quarantine of locations that surround an infested area also acts as a safeguard to counteract the risk of failed detections of the pest in field surveys. In this paper, we present a method that assesses the suitability of preemptive quarantine measures at the level of small geographical subdivisions (U.S. counties). The cost of a preemptive quarantine in a given county is weighed against the protective benefit of delaying the spread of an outbreak to other neighboring counties. We demonstrate the approach with a decision support model that estimates the suitability of preemptive quarantine across multiple counties that surround areas infested with the emerald ash borer (Agrilus planipennis Fairmaire (EAB), Coleoptera: Buprestidae), an emerging major threat to ash tree species (Fraxinus spp.) in North America. The model identifies the U.S. counties where the installation of preemptive quarantine would most effectively slow the spread of EAB populations and reduce risk to high-value areas.


Subject(s)
Coleoptera , Fraxinus , Models, Theoretical , Quarantine/economics , Animals , Disease Outbreaks/prevention & control , Geographic Information Systems , Great Lakes Region , Humans , Insect Control , Quarantine/methods , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...