Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 736
Filter
2.
ACS Omega ; 9(27): 29379-29390, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39005832

ABSTRACT

Herein, we explored the oxidative coupling reactions of carbazole-based polycyclic aromatic hydrocarbons using traditional Scholl reactions and electrochemical oxidation. Our findings indicate that the oxidation predominantly occurs at the carbazole functional group. The underlying reaction mechanisms were also clarified through theoretical investigations, highlighting that the primary oxidation pathway involves the 3,6-positions of the carbazole moiety, which is attributable to its high electron density.

3.
J Cell Mol Med ; 28(13): e18523, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38957039

ABSTRACT

This research explores the role of microRNA in senescence of human endothelial progenitor cells (EPCs) induced by replication. Hsa-miR-134-5p was found up-regulated in senescent EPCs where overexpression improved angiogenic activity. Hsa-miR-134-5p, which targeted transforming growth factor ß-activated kinase 1-binding protein 1 (TAB1) gene, down-regulated TAB1 protein, and inhibited phosphorylation of p38 mitogen-activated protein kinase (p38) in hsa-miR-134-5p-overexpressed senescent EPCs. Treatment with siRNA specific to TAB1 (TAB1si) down-regulated TAB1 protein and subsequently inhibited p38 activation in senescent EPCs. Treatment with TAB1si and p38 inhibitor, respectively, showed angiogenic improvement. In parallel, transforming growth factor Beta 1 (TGF-ß1) was down-regulated in hsa-miR-134-5p-overexpressed senescent EPCs and addition of TGF-ß1 suppressed the angiogenic improvement. Analysis of peripheral blood mononuclear cells (PBMCs) disclosed expression levels of hsa-miR-134-5p altered in adult life, reaching a peak before 65 years, and then falling in advanced age. Calculation of the Framingham risk score showed the score inversely correlates with the hsa-miR-134-5p expression level. In summary, hsa-miR-134-5p is involved in the regulation of senescence-related change of angiogenic activity via TAB1-p38 signalling and via TGF-ß1 reduction. Hsa-miR-134-5p has a potential cellular rejuvenation effect in human senescent EPCs. Detection of human PBMC-derived hsa-miR-134-5p predicts cardiovascular risk.


Subject(s)
Adaptor Proteins, Signal Transducing , Cardiovascular Diseases , Cellular Senescence , Endothelial Progenitor Cells , Leukocytes, Mononuclear , MicroRNAs , p38 Mitogen-Activated Protein Kinases , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Endothelial Progenitor Cells/metabolism , Cellular Senescence/genetics , Leukocytes, Mononuclear/metabolism , Middle Aged , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Male , Cardiovascular Diseases/genetics , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , p38 Mitogen-Activated Protein Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , Female , Aged , Neovascularization, Physiologic/genetics , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Adult , Risk Factors
4.
J Formos Med Assoc ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38853047

ABSTRACT

AIMS: Managing proximal humerus pathologic fractures requires strategic planning to ensure optimal patient outcomes. Traditionally, fixation of the humerus using long devices has been considered the standard of care, but emerging evidence has challenged this approach. This study aimed to compare long plates (LPs) and intermediate-length plates (IPs) in this clinical context. METHODS: Forty-four patients with proximal humerus metastatic bone disease were retrospectively studied from 2013 to 2019, with 11 (25%) receiving long plates (LPs) and 33 (75%) intermediate-length plates (IPs). Outcomes included tumor progression, reoperation rates, postoperative anemia, blood loss, operation time, and hospitalization duration. Tumor progression was classified into three categories, with Type III progression (new metastatic lesions in the distal humerus) theoretically benefiting most from whole bone stabilization. RESULTS: Tumor progression occurred in three patients (7%), all of them was in IPs. No revision surgery was needed to address these tumor progressions, including one type III progression which occurred 34 months postoperatively after IP surgery. IP were associated with a reduced operation time compared with LP (median, 1.5 h [IQR, 1.2-1.9] vs. 2.4 [IQR, 1.7-2.5]; p = 0.004). No differences were found for the other perioperative outcomes. CONCLUSIONS: Our findings reveal a low incidence of tumor progression and low reoperation rates in both groups. The shortened operative time associated with IP use suggests its particular suitability for patients with limited life expectancy. Further research is needed to elucidate the ideal prosthesis length that best balances the risks and benefits when addressing proximal humerus metastatic disease.

5.
J Pathol Clin Res ; 10(4): e12387, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38860888

ABSTRACT

Gastric poorly cohesive carcinoma (PCC) manifests with a diffuse pattern and diverse tumor cell morphologies, often indicating a more unfavorable prognosis. Recent consensus has reclassified PCC based on the proportion of signet-ring cells (SRCs) in tumors for research purposes. The two most distinct subtypes, poorly cohesive carcinoma not otherwise specified (PCC-NOS) and signet-ring cell carcinoma (SRCC), are characterized by less than 10% and more than 90% SRCs, respectively. However, research comparing the clinicopathological and transcriptomic differences between these subtypes remains limited. In this study, we conducted a comparative analysis of clinicopathological features in 55 advanced-stage PCCs, consisting of 43 PCC-NOS and 12 SRCC cases. Subsequently, 12 PCC-NOS and 5 SRCC cases were randomly selected for initial cancer-related gene expression profiling and pathway enrichment analysis using the GeoMx digital spatial profiler, followed by validation in a separate validation group comprising 16 PCC-NOS and 6 SRCC cases. These transcriptomic findings were then correlated with tumor morphology and clinicopathological data. PCC-NOS cases exhibited larger tumor size, a higher prevalence of pathological N3 disease, and a worse 1-year progression-free survival rate compared to SRCC cases. Clustering of PCC-NOS and SRCC was successfully achieved using the GeoMx Cancer Transcriptome Atlas. Among all studied genes, only MMP7 showed differential expression, with its overexpression significantly associated with the PCC-NOS subtype, increased perineural invasion, and earlier disease progression. Pathway analysis revealed significantly enriched pathways in PCC-NOS related to vesicle-mediated transport, adaptive immune systems, oncogenic signaling, and extracellular matrix organization, while SRCC displayed significant enrichment in pathways associated with respiratory electron transport and the cell cycle. In conclusion, this study compares and correlates clinicopathological features and transcriptomic data between PCC-NOS and SRCC at advanced stages, employing the latest consensus classification and a novel platform for analysis.


Subject(s)
Carcinoma, Signet Ring Cell , Gene Expression Profiling , Stomach Neoplasms , Transcriptome , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Male , Female , Middle Aged , Aged , Carcinoma, Signet Ring Cell/pathology , Carcinoma, Signet Ring Cell/genetics , Gene Expression Regulation, Neoplastic , Adult , Biomarkers, Tumor/genetics , Aged, 80 and over , Progression-Free Survival , Prognosis
6.
J Mater Chem B ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38895823

ABSTRACT

In recent decades, orthopedic implants have been widely used as materials to replace human bone tissue functions. Among these, metal implants play a crucial role. Metals with better chemical stability, such as stainless steel, titanium alloys, and cobalt-chromium-molybdenum (CoCrMo) alloy, are commonly used for long-term applications. However, good chemical stability can result in poor tissue integration between the tissue and the implant, leading to potential inflammation risks. This study creates hydrogenated CoCrMo (H-CoCrMo) surfaces, which have shown promise as anti-inflammatory orthopedic implants. Using the electrochemical cathodic hydrogen-charging method, the surface of the CoCrMo alloy was hydrogenated, resulting in improved biocompatibility, reduced free radicals, and an anti-inflammatory response. Hydrogen diffusion to a depth of approximately 106 ± 27 nm on the surface facilitated these effects. This hydrogen-rich surface demonstrated a reduction of 85.2% in free radicals, enhanced hydrophilicity as evidenced by a decrease in a contact angle from 83.5 ± 1.9° to 52.4 ± 2.2°, and an increase of 11.4% in hydroxyapatite deposition surface coverage. The cell study results revealed a suppression of osteosarcoma cell activity to 50.8 ± 2.9%. Finally, the in vivo test suggested the promotion of new bone formation and a reduced inflammatory response. These findings suggest that electrochemical hydrogen charging can effectively modify CoCrMo surfaces, offering a potential solution for improving orthopedic implant outcomes through anti-inflammatory mechanisms.

7.
J Cell Mol Med ; 28(12): e18489, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38899522

ABSTRACT

This study explores the impact of senescence on autocrine C-C motif chemokine ligand 5 (CCL5) in human endothelial progenitor cell (EPCs), addressing the poorly understood decline in number and function of EPCs during ageing. We examined the effects of replication-induced senescence on CCL5/CCL5 receptor (CCR5) signalling and angiogenic activity of EPCs in vitro and in vivo. We also explored microRNAs controlling CCL5 secretion in senescent EPCs, its impact on EPC angiogenic activity, and validated our findings in humans. CCL5 secretion and CCR5 levels in senescent EPCs were reduced, leading to attenuated angiogenic activity. CCL5 enhanced EPC proliferation via the CCR5/AKT/P70S6K axis and increased vascular endothelial growth factor (VEGF) secretion. Up-regulation of miR-409 in senescent EPCs resulted in decreased CCL5 secretion, inhibiting the angiogenic activity, though these negative effects were counteracted by the addition of CCL5 and VEGF. In a mouse hind limb ischemia model, CCL5 improved the angiogenic activity of senescent EPCs. Analysis involving 62 healthy donors revealed a negative association between CCL5 levels, age and Framingham Risk Score. These findings propose CCL5 as a potential biomarker for detection of EPC senescence and cardiovascular risk assessment, suggesting its therapeutic potential for age-related cardiovascular disorders.


Subject(s)
Cellular Senescence , Chemokine CCL5 , Endothelial Progenitor Cells , MicroRNAs , Neovascularization, Physiologic , Animals , Humans , Male , Mice , Angiogenesis , Cell Proliferation , Chemokine CCL5/metabolism , Chemokine CCL5/genetics , Down-Regulation/genetics , Endothelial Progenitor Cells/metabolism , Endothelial Progenitor Cells/cytology , Ischemia/metabolism , Ischemia/pathology , Ischemia/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Neovascularization, Physiologic/genetics , Receptors, CCR5/metabolism , Receptors, CCR5/genetics , Signal Transduction , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics
8.
ACS Appl Mater Interfaces ; 16(22): 29016-29028, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38783839

ABSTRACT

Graphene has received much scientific attention as an electrode material for lithium-ion batteries because of its extraordinary physical and electrical properties. However, the lack of structural control and restacking issues have hindered its application as carbon-based anode materials for next generation lithium-ion batteries. To improve its performance, several modification approaches such as edge-functionalization and electron-donating/withdrawing substitution have been considered as promising strategies. In addition, group 7A elements have been recognized as critical elements due to their electronegativity and electron-withdrawing character, which are able to further improve the electronic and structural properties of materials. Herein, we elucidated the chemistry of nanographenes with edge-substituted group 7A elements as lithium-ion battery anodes. The halogenated nanographenes were synthesized via bottom-up organic synthesis to ensure the structural control. Our study reveals that the presence of halogens on the edge of nanographenes not only tunes the structural and electronic properties but also impacts the material stability, reactivity, and Li+ storage capability. Further systematic spectroscopic studies indicate that the charge polarization caused by halogen atoms could regulate the Li+ transport, charge transfer energy, and charge storage behavior in nanographenes. Overall, this study provides a new molecular design for nanographene anodes aiming for next-generation lithium-ion batteries.

9.
ACS Nano ; 18(22): 14176-14186, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38768371

ABSTRACT

Two-dimensional (2D) organic-inorganic metal halide perovskites have gained immense attention as alternatives to three-dimensional (3D) perovskites in recent years. The hydrophobic spacers in the layered structure of 2D perovskites make them more moisture-resistant than 3D perovskites. Moreover, they exhibit unique anisotropic electrical transport properties due to a structural confinement effect. In this study, four lead-free Dion-Jacobson (DJ) Sn-based phase perovskite single crystals, 3AMPSnI4, 4AMPSnI4, 3AMPYSnI4, and 4AMPYSnI4 [AMP = (aminomethyl)-piperidinium, AMPY = (aminomethyl)pyridinium] are reported. Results reveal structural differences between them impacting the resulting optical properties. Namely, higher octahedron distortion results in a higher absorption edge. Density functional theory (DFT) is also performed to determine the trends in energy band diagrams, exciton binding energies, and formation energies due to structural differences among the four single crystals. Finally, a field-effect transistor (FET) based on 4AMPSnI4 is demonstrated with a respectable hole mobility of 0.57 cm2 V-1 s-1 requiring a low threshold voltage of only -2.5 V at a drain voltage of -40 V. To the best of our knowledge, this is the third DJ-phase perovskite FET reported to date.

10.
Science ; 384(6697): 767-775, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38753792

ABSTRACT

The efficiency and longevity of metal-halide perovskite solar cells are typically dictated by nonradiative defect-mediated charge recombination. In this work, we demonstrate a vapor-based amino-silane passivation that reduces photovoltage deficits to around 100 millivolts (>90% of the thermodynamic limit) in perovskite solar cells of bandgaps between 1.6 and 1.8 electron volts, which is crucial for tandem applications. A primary-, secondary-, or tertiary-amino-silane alone negatively or barely affected perovskite crystallinity and charge transport, but amino-silanes that incorporate primary and secondary amines yield up to a 60-fold increase in photoluminescence quantum yield and preserve long-range conduction. Amino-silane-treated devices retained 95% power conversion efficiency for more than 1500 hours under full-spectrum sunlight at 85°C and open-circuit conditions in ambient air with a relative humidity of 50 to 60%.

11.
Theranostics ; 14(7): 2706-2718, 2024.
Article in English | MEDLINE | ID: mdl-38773966

ABSTRACT

Background: Neurotropic virus infections actively manipulate host cell metabolism to enhance virus neurovirulence. Although hyperglycemia is common during severe infections, its specific role remains unclear. This study investigates the impact of hyperglycemia on the neurovirulence of enterovirus 71 (EV71), a neurovirulent virus relying on internal ribosome entry site (IRES)-mediated translation for replication. Methods: Utilizing hSCARB2-transgenic mice, we explore the effects of hyperglycemia in EV71 infection and elucidate the underlying mechanisms. Results: Remarkably, administering insulin alone to reduce hyperglycemia in hSCARB2-transgenic mice results in a decrease in brainstem encephalitis and viral load. Conversely, induced hyperglycemia exacerbates neuropathogenesis, highlighting the pivotal role of hyperglycemia in neurovirulence. Notably, miR-206 emerges as a crucial mediator induced by viral infection, with its expression further heightened by hyperglycemia and concurrently repressed by insulin. The use of antagomiR-206 effectively mitigates EV71-induced brainstem encephalitis and reduces viral load. Mechanistically, miR-206 facilitates IRES-driven virus replication by repressing the stress granule protein G3BP2. Conclusions: Novel therapeutic approaches against severe EV71 infections involve managing hyperglycemia and targeting the miR-206-stress granule pathway to modulate virus IRES activity.


Subject(s)
Enterovirus A, Human , Enterovirus Infections , Hyperglycemia , Internal Ribosome Entry Sites , Mice, Transgenic , MicroRNAs , Virus Replication , Animals , MicroRNAs/metabolism , MicroRNAs/genetics , Enterovirus A, Human/physiology , Enterovirus A, Human/genetics , Hyperglycemia/metabolism , Hyperglycemia/virology , Mice , Enterovirus Infections/virology , Enterovirus Infections/metabolism , Humans , Viral Load , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Insulin/metabolism , Disease Models, Animal
12.
Mol Oncol ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38770553

ABSTRACT

Accumulation of abnormal chondroitin sulfate (CS) chains in breast cancer tissue is correlated with poor prognosis. However, the biological functions of these CS chains in cancer progression remain largely unknown, impeding the development of targeted treatment focused on CS. Previous studies identified chondroitin polymerizing factor (CHPF; also known as chondroitin sulfate synthase 2) is the critical enzyme regulating CS accumulation in breast cancer tissue. We then assessed the association between CHPF-associated proteoglycans (PGs) and signaling pathways in breast cancer datasets. The regulation between CHPF and syndecan 1 (SDC1) was examined at both the protein and RNA levels. Confocal microscopy and image flow cytometry were employed to quantify macropinocytosis. The effects of the 6-O-sulfated CS-binding peptide (C6S-p) on blocking CS functions were tested in vitro and in vivo. Results indicated that the expression of CHPF and SDC1 was tightly associated within primary breast cancer tissue, and high expression of both genes exacerbated patient prognosis. Transforming growth factor beta (TGF-ß) signaling was implicated in the regulation of CHPF and SDC1 in breast cancer cells. CHPF supported CS-SDC1 stabilization on the cell surface, modulating macropinocytotic activity in breast cancer cells under nutrient-deprived conditions. Furthermore, C6S-p demonstrated the ability to bind CS-SDC1, increase SDC1 degradation, suppress macropinocytosis of breast cancer cells, and inhibit tumor growth in vivo. Although other PGs may also be involved in CHPF-regulated breast cancer malignancy, this study provides the first evidence that a CS synthase participates in the regulation of macropinocytosis in cancer cells by supporting SDC1 expression on cancer cells.

13.
Adv Mater ; 36(26): e2314054, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38573654

ABSTRACT

A cost-effective, scalable ball milling process is employed to synthesize the InGeSiP3 compound with a cubic ZnS structure, aiming to address the sluggish reaction kinetics of Si-based anodes for Lithium-ion batteries. Experimental measurements and first-principles calculations confirm that the synthesized InGeSiP3 exhibits significantly higher electronic conductivity, larger Li-ion diffusivity, and greater tolerance to volume change than its parent phases InGe (or Si)P2 or In (or Ge, or Si)P. These improvements stem from its elevated configurational entropy. Multiple characterizations validate that InGeSiP3 undergoes a reversible Li-storage mechanism that involves intercalation, followed by conversion and alloy reactions, resulting in a reversible capacity of 1733 mA h g-1 with an initial Coulombic efficiency of 90%. Moreover, the InGeSiP3-based electrodes exhibit exceptional cycling stability, retaining an 1121 mA h g-1 capacity with a retention rate of ≈87% after 1500 cycles at 2000 mA g-1 and remarkable high-rate capability, achieving 882 mA h g-1 at 10 000 mA g-1. Inspired by the distinctive characteristic of high entropy, the synthesis is extended to high entropy GaCu (or Zn)InGeSiP5, CuZnInGeSiP5, GaCuZnInGeSiP6, InGeSiP2S (or Se), and InGeSiPSSe. This endeavor overcomes the immiscibility of different metals and non-metals, paving the way for the electrochemical energy storage application of high-entropy silicon-phosphides.

15.
Adv Mater ; 36(28): e2402568, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38682831

ABSTRACT

Solution-processed high-performing ambipolar organic phototransistors (OPTs) can enable low-cost integrated circuits. Here, a heteroatom engineering approach to modify the electron affinity of a low band gap diketopyrrolopyrole (DPP) co-polymer, resulting in well-balanced charge transport, a more preferential edge-on orientation and higher crystallinity, is demonstrated. Changing the comonomer heteroatom from sulfur (benzothiadiazole (BT)) to oxygen (benzooxadiazole (BO)) leads to an increased electron affinity and introduces higher ambipolarity. Organic thin film transistors fabricated from the novel PDPP-BO exhibit charge carrier mobility of 0.6 and 0.3 cm2 Vs⁻1 for electrons and holes, respectively. Due to the high sensitivity of the PDPP-based material and the balanced transport in PDPP-BO, its application as an NIR detector in an OPT architecture is presented. By maintaining a high on/off ratio (9 × 104), ambipolar OPTs are shown with photoresponsivity of 69 and 99 A W⁻1 and specific detectivity of 8 × 107 for the p-type operation and 4 × 109 Jones for the n-type regime. The high symmetric NIR-ambipolar OPTs are also evaluated as ambipolar photo-inverters, and show a 46% gain enhancement under illumination.

16.
J Am Heart Assoc ; 13(8): e034176, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38606775

ABSTRACT

BACKGROUND: Concomitant atrial fibrillation and end-stage renal disease is common and associated with an unfavorable prognosis. Although oral anticoagulants have been well established to prevent thromboembolism, the applicability in patients under long-term dialysis remains debatable. The study aimed to determine the efficacy and safety of anticoagulation in the dialysis-dependent population. METHODS AND RESULTS: An updated network meta-analysis based on MEDLINE, EMBASE, and the Cochrane Library was performed. Studies published up to December 2022 were included. Direct oral anticoagulants (DOACs, dabigatran, rivaroxaban, apixaban 2.5/5 mg twice daily), vitamin K antagonists (VKAs), and no anticoagulation were compared on safety and efficacy outcomes. The outcomes of interest were major bleeding, thromboembolism, and all-cause death. A total of 42 studies, including 3 randomized controlled trials, with 185 864 subjects were pooled. VKAs were associated with a significantly higher risk of major bleeding than either no anticoagulation (hazard ratio [HR], 1.47; 95% CI, 1.34-1.61) or DOACs (DOACs versus VKAs; HR, 0.74 [95% CI, 0.64-0.84]). For the prevention of thromboembolism, the efficacies of VKAs, DOACs, and no anticoagulation were equivalent. Nevertheless, dabigatran and rivaroxaban were associated with fewer embolic events. There were no differences in all-cause death with the administration of VKAs, DOACs, or no anticoagulation. CONCLUSIONS: For dialysis-dependent populations, dabigatran and rivaroxaban were associated with better efficacy, while dabigatran and apixaban demonstrated better safety. No anticoagulation was a noninferior alterative, and VKAs were associated with the worst outcomes.


Subject(s)
Atrial Fibrillation , Kidney Failure, Chronic , Stroke , Thromboembolism , Humans , Atrial Fibrillation/complications , Atrial Fibrillation/drug therapy , Rivaroxaban/therapeutic use , Dabigatran/therapeutic use , Stroke/etiology , Network Meta-Analysis , Anticoagulants/adverse effects , Hemorrhage/chemically induced , Fibrinolytic Agents/therapeutic use , Administration, Oral , Kidney Failure, Chronic/therapy , Kidney Failure, Chronic/drug therapy , Thromboembolism/drug therapy , Randomized Controlled Trials as Topic
17.
J Am Soc Mass Spectrom ; 35(5): 960-971, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38616559

ABSTRACT

In Asia, some herbal preparations have been found to be adulterated with undeclared synthetic medicines to increase their therapeutic efficiency. Many of these adulterants were found to be toxic when overdosed and have been documented to bring about severe, even life-threatening acute poisoning events. The objective of this study is to develop a rapid and sensitive ambient ionization mass spectrometric platform to characterize the undeclared toxic adulterated ingredients in herbal preparations. Several common adulterants were spiked into different herbal preparations and human sera to simulate the clinical conditions of acute poisoning. They were then sampled with a metallic probe and analyzed by the thermal desorption-electrospray ionization mass spectrometry. The experimental parameters including sensitivity, specificity, accuracy, and turnaround time were prudently optimized in this study. Since tedious and time-consuming pretreatment of the sample is unnecessary, the toxic adulterants could be characterized within 60 s. The results can help emergency physicians to make clinical judgments and prescribe appropriate antidotes or supportive treatment in a time-sensitive manner.


Subject(s)
Drug Contamination , Plant Preparations , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Electrospray Ionization/methods , Humans , Plant Preparations/analysis , Plant Preparations/chemistry , Emergency Medical Services/methods
19.
Adv Sci (Weinh) ; 11(19): e2400117, 2024 May.
Article in English | MEDLINE | ID: mdl-38477430

ABSTRACT

Ionic liquid salts (ILs) are generally recognized as additives in perovskite precursor solutions to enhance the efficiency and stability of solar cells. However, the success of ILs incorporation as additives is highly dependent on the precursor formulation and perovskite crystallization process, posing challenges for industrial-scale implementation. In this study, a room-temperature spin-coated IL, n-butylamine acetate (BAAc), is identified as an ideal passivation agent for formamidinium lead iodide (FAPbI3) films. Compared with other passivation methods, the room-temperature BAAc capping layer (BAAc RT) demonstrates more uniform and thorough passivation of surface defects in the FAPbI3 perovskite. Additionally, it provides better energy level alignment for hole extraction. As a result, the champion n-i-p perovskite solar cell with a BAAc capping layer exhibits a power conversion efficiency (PCE) of 24.76%, with an open-circuit voltage (Voc) of 1.19 V, and a Voc loss of ≈330 mV. The PCE of the perovskite mini-module with BAAc RT reaches 20.47%, showcasing the effectiveness and viability of this method for manufacturing large-area perovskite solar cells. Moreover, the BAAc passivation layer also improves the long-term stability of unencapsulated FAPbI3 perovskite solar cells, enabling a T80 lifetime of  3500 h when stored at 35% relative humidity at room temperature in an air atmosphere.

20.
J Tradit Complement Med ; 14(2): 215-222, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38481547

ABSTRACT

Angiotensin II receptor blockers (ARBs) are one of the standard treatments for diabetic kidney disease (DKD). Some patients may opt for Chinese herbal medicine (CHM) of their own free will. However, there is no real-world evidence regarding the effectiveness and safety of CHM. We aimed to explore the effectiveness of CHM for DKD in comparison to ARBs. We enrolled 732 DKD patients (72 used only CHM and 661 used ARBs) from 2007 to 2016, and all patients were followed until December 2016 at China Medical University Hospital in Taiwan. A total of 355 ARB users and 71 CHM users were analyzed after propensity score matching. The estimated glomerular filtration rate (eGFR) after treatment was 84.9 ± 28.1 ml/min/1.73 m2 in CHM users, which was higher than that (67.8 ± 35.4 ml/min/1.73 m2) in ARB users (p < 0.001). The change in the eGFR was -6.0 ± 21.4 ml/min/1.73 m2 in CHM users and -12.9 ± 24.8 ml/min/1.73 m2 in ARB users (p = 0.029). The blood urea nitrogen (BUN) and creatinine levels of patients taking CHM were 22 ± 16 mg/dl and 0.9 ± 0.4 mg/dl, respectively, and were lower than those (30 ± 28 mg/dl and 1.7 ± 2.0 mg/dl) of patients taking ARBs (p = 0.025 and p = 0.003). Using linear regression with adjustments for age, sex, BMI, baseline eGFR, and HbA1c levels, we found that the declines in the eGFR/baseline eGFR and changes in the urine albumin-creatinine ratio (ACR) were comparable between the two groups (p = 0.86 and 0.73). This study suggests that CHM may have comparable effectiveness to ARBs, which provides insights for further investigations.

SELECTION OF CITATIONS
SEARCH DETAIL
...