Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale Res Lett ; 14(1): 141, 2019 Apr 23.
Article in English | MEDLINE | ID: mdl-31016404

ABSTRACT

In this article, we report a facile and simple approach for tuning graphene nanosheet structures (GNS) with different ions in the electrolytes through cathodic plasma exfoliation process in electrochemical reactions. We obtained sheet- and onion-like GNS when aqueous electrolyte NaOH and H2SO4, respectively, were present during plasma exfoliation in the electrochemical reactions, as evidenced from scanning electron microscopy and transmission electron microscopy images. Moreover, the onion-like GNS exhibited a specific surface area of 464 m2 g-1 and a supercapacitive performance of 67.1 F g-1, measured at a scan rate of 5 mV s-1 in 1 M NaCl; these values were much higher than those (72 m2 g-1 and 21.6 F g-1, respectively) of the sheet-like GNS. This new approach for efficiently generating tunable stacked graphene structures with different ions, in the cathodic plasma exfoliation process, has promising potentials for use in energy storage devices.

2.
ACS Appl Mater Interfaces ; 11(16): 14786-14795, 2019 Apr 24.
Article in English | MEDLINE | ID: mdl-30900877

ABSTRACT

Doping nonmetal atoms into layered transition metal dichalcogenide MX2 structures has emerged as a promising strategy for enhancing their catalytic activities for the hydrogen evolution reaction. In this study, we developed a new and efficient one-step approach that involves simultaneous plasma-induced doping and exfoliating of MX2 bulk into nanosheets-such as MoSe2, WSe2, MoS2, and WS2 nanosheets-within a short time and at a low temperature (ca. 80 °C). Specifically, by utilizing active plasma that is generated with an asymmetric electrical field during the electrochemical reaction at the surface of the submerged cathode tip, we are able to achieve doping of nitrogen atoms, from the electrolytes, into the semiconducting 2H-MX2 structures during their exfoliation process from the bulk states, forming N-doped MX2. We selected N-doped MoS2 nanosheets for demonstrating their catalytic hydrogen evolution potential. We modulated the electronic and transport properties of the MoS2 structure with the synergy of nitrogen doping and exfoliating for enhancing their catalytic activity. We found that the nitrogen concentration of 5.2 atom % at N-doped MoS2 nanosheets have an excellent catalytic hydrogen evolution reaction, where a low overpotential of 164 mV at a current density of 10 mA cm-2 and a small Tafel slope of 71 dec mV-1-much lower than those of exfoliated MoS2 nanosheets (207 mV, 82 dec mV-1) and bulk MoS2 (602 mV, 198 dec mV-1)-as well as an extraordinary long-term stability of >25 h in 0.5 M H2SO4 can be achieved.

3.
J Neurovirol ; 24(4): 411-419, 2018 08.
Article in English | MEDLINE | ID: mdl-29594984

ABSTRACT

Macrophages are a major target of HIV/SIV infection and play an important role in pathogenesis by serving as viral reservoirs in the central nervous system. Previously, a unique early SIVmac251 envelope (Env) variant, deSIV147 was cloned from blood of a rhesus macaque with rapid disease progression and SIV-associated encephalitis. Here, we show that infectious molecular clone deSIV147 caused systemic infection in rhesus macaques following intravenous or intrarectal exposure. Next, we inoculated deSIV147 into macaques depleted of CD4+ T cells and found that animals were SIV-positive, with high plasma and CSF viral loads. These macaques also showed SIVp17-positive macrophages in brain, lymph nodes, colon, lung, and liver. Furthermore, accumulation of perivascular macrophages, multinucleated giant cells, and microgliosis was detected. These findings suggest that the neurotropic deSIV147 clone will be useful to study macrophage infection in HIV/SIV-associated neurocognitive disorders, gain insights into myeloid cell reservoirs in brain and other anatomical sites, as well as test strategies for eradication.


Subject(s)
Macrophages/virology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/physiology , Animals , Macaca mulatta , Male
4.
Virology ; 458-459: 53-68, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24928039

ABSTRACT

Macrophages play an important role in HIV/SIV pathogenesis by serving as a reservoir for viral persistence in brain and other tissues. Infected macrophages have been detected in brain early after infection, but macrophage-tropic viruses are rarely isolated until late-stage infection. Little is known about early variants that establish persistent infection in brain. Here, we characterize a unique macrophage-tropic SIV envelope glycoprotein (Env) variant from two weeks post-infection in blood of an SIVmac251-infected macaque that is closely related to sequences in brain from animals with neurological disease. SIVmac251 clones expressing this Env are highly fusogenic, and replicate efficiently in T cells and macrophages. N173 and N481 were identified as novel determinants of macrophage tropism and neutralization sensitivity. These results imply that macrophage-tropic SIV capable of establishing viral reservoirs in brain can be present in blood during early infection. Furthermore, these SIVmac251 clones will be useful for studies on pathogenesis, eradication, and vaccines.


Subject(s)
Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/classification , Viral Envelope Proteins/metabolism , Amino Acid Sequence , Animals , Gene Expression Regulation, Viral , Genetic Variation , HEK293 Cells , Humans , Macaca mulatta , Macrophages/virology , Models, Molecular , Molecular Sequence Data , Phylogeny , Protein Conformation , Simian Acquired Immunodeficiency Syndrome/pathology , Simian Immunodeficiency Virus/metabolism , Viral Envelope Proteins/genetics , Virus Replication/genetics , Virus Replication/physiology
5.
J Virol ; 88(9): 5014-28, 2014 May.
Article in English | MEDLINE | ID: mdl-24554659

ABSTRACT

UNLABELLED: Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) strains differ in their capacity to replicate in macrophages, but mechanisms underlying these differences are not fully understood. Here, we identify a highly conserved N-linked glycosylation site (N173 in SIV, corresponding to N160 in HIV) in the V2 region of the SIV envelope glycoprotein (Env) as a novel determinant of macrophage tropism and characterize mechanisms underlying this phenotype. Loss of the N173 glycosylation site in the non-macrophage-tropic SIVmac239 by introducing an N173Q mutation enhanced viral replication and multinucleated giant cell formation upon infection of rhesus macrophages, while the addition of N173 to SIVmac251 had the opposite effect. The removal of N173 in SIVmac239 enhanced CD4-independent cell-to-cell transmission to CCR5-expressing cells. SIVmac239 with N173Q mediated CD4-independent cell-cell fusion but could not infect CD4-negative cells in single-round infections. Thus, CD4-independent phenotypes were detected only in the context of cell-to-cell contact. Similar results were obtained in SIVmac251 with and without N173. N173 decreased the neutralization sensitivity of SIVmac251 but had no effect on the neutralization sensitivity of SIVmac239. The N173Q mutation had no effect on SIVmac239 binding to CD4 in Biacore assays, coimmunoprecipitation assays, and enzyme-linked immunosorbent assays (ELISAs). These findings suggest that the loss of the N173 N-linked glycosylation site increases SIVmac239 replication in macrophages by enhancing CD4-independent cell-to-cell virus transmission through CCR5-mediated fusion. This mechanism may facilitate the escape of macrophage-tropic viruses from neutralizing antibodies while promoting spreading infection by these viruses in vivo. IMPORTANCE: In this study, we identify a genetic determinant in the viral envelope (N173) that increases replication and spreading infection of SIV strains in macrophages by enhancing cell-to-cell virus transmission. This effect is explained by a novel mechanism involving increased cell-to-cell fusion in the absence of CD4, the primary receptor that normally mediates virus entry. The same genetic determinant also affects the sensitivity of these viruses to inhibition by neutralizing antibodies. Most macrophage-tropic HIV/SIV strains are known to be neutralization sensitive. Together, these findings suggest that this efficient mode of virus transmission may facilitate the escape of macrophage-tropic viruses from neutralizing antibodies while promoting spreading infection by these viruses to cells expressing little or no CD4 in vivo.


Subject(s)
CD4-Positive T-Lymphocytes/virology , Glycoproteins/metabolism , Macrophages/virology , Simian Immunodeficiency Virus/physiology , Viral Envelope Proteins/metabolism , Viral Tropism , Animals , Cells, Cultured , Glycosylation , Macaca mulatta
6.
Org Lett ; 14(20): 5346-9, 2012 Oct 19.
Article in English | MEDLINE | ID: mdl-23035862

ABSTRACT

A new method has been developed for the enantioselective synthesis of highly functionalized hydropentalenes bearing up to four stereogenic centers with high stereoselectivity (up to 99% ee). This process combines an enantioselective organocatalytic anti-selective Michael addition with a highly efficient one-pot reduction/lactonization/Pauson-Khand reaction sequence. The structures and absolute configurations of the products were confirmed by X-ray analysis.

7.
Genomics ; 88(6): 801-808, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17011161

ABSTRACT

Echinacea spp. are popularly used as an herbal medicine or food supplement for enhancing the immune system. This study shows that plant extracts from root [R] and stem plus leaf [S+L] tissues of E. purpurea exhibit opposite (enhancing vs inhibitory) modulatory effects on the expression of the CD83 marker in human dendritic cells (DCs), which are known as professional antigen-presenting cells. We developed a function-targeted DNA microarray system to characterize the effects of phytocompounds on human DCs. Down-regulation of mRNA expression of specific chemokines (e.g., CCL3 and CCL8) and their receptors (e.g., CCR1 and CCR9) was observed in [S+L]-treated DCs. Other chemokines and regulatory molecules (e.g., CCL4 and CCL2) involved in the c-Jun pathway were found to be up-regulated in [R]-treated DCs. This study, for the first time, demonstrates that E. purpurea extracts can modulate DC differentiation and expression of specific immune-related genes in DCs.


Subject(s)
Dendritic Cells/cytology , Dendritic Cells/immunology , Echinacea/chemistry , Oligonucleotide Array Sequence Analysis/methods , Plant Extracts/pharmacology , Proteins/genetics , Antigens, CD/metabolism , Cell Differentiation/drug effects , Chemokines/metabolism , Dendritic Cells/drug effects , Down-Regulation , Gene Expression Profiling , Humans , Immunoglobulins/metabolism , Membrane Glycoproteins/metabolism , Plant Extracts/chemistry , Plant Leaves/chemistry , Plant Roots/chemistry , Plant Stems/chemistry , Proteins/metabolism , Receptors, Chemokine/metabolism , Up-Regulation , CD83 Antigen
SELECTION OF CITATIONS
SEARCH DETAIL
...