Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 253(Pt 3): 126913, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37716656

ABSTRACT

Epithelial cell adhesion molecules (EpCAM) are highly expressed in many carcinomas and regulate the epithelial-mesenchymal transition, which is required for tumor metastasis. Furthermore, EpCAM overexpression induces tumor cells to develop a stem cell-like phenotype and promotes tumor progression. Targeting EpCAM may be a promising approach for inhibiting tumor metastasis and progression. Salmonella treatment suppresses tumor growth and reduces metastatic nodules in tumor-bearing mice. Based on these results, we hypothesized that Salmonella-based treatments could inhibit the expression of metastasis-associated proteins. The dose-dependent Salmonella treatment significantly downregulated the levels of EpCAM and decreased the phosphorylation of protein kinase-B (AKT)/mTOR (mammalian target of rapamycin) pathway, as shown by immunoblotting. In addition, Salmonella treatment increased the levels of epithelial markers and decreased the levels of mesenchymal markers in a dose-dependent manner. Wound-healing and Transwell assays showed that Salmonella treatment significantly reduced tumor cell migration. The mice were intravenously injected with B16F10 and CT26 cells pre-incubated with or without Salmonella, and the survival of tumor-bearing mice in the Salmonella group increased, indicating an antimetastatic effect. Our findings demonstrate that Salmonella plays a role in inhibiting tumor metastasis by downregulating EpCAM via the AKT/mTOR signaling pathway and has great potential for cancer therapy.


Subject(s)
Proto-Oncogene Proteins c-akt , Sirolimus , Animals , Mice , Epithelial Cell Adhesion Molecule/genetics , Proto-Oncogene Proteins c-akt/metabolism , Sirolimus/pharmacology , Cell Line, Tumor , Signal Transduction/genetics , TOR Serine-Threonine Kinases/metabolism , Salmonella , Epithelial-Mesenchymal Transition , Cell Movement , Cell Proliferation/genetics , Mammals/metabolism
2.
Nanoscale ; 6(4): 2194-200, 2014 Feb 21.
Article in English | MEDLINE | ID: mdl-24382571

ABSTRACT

Solution processing of π-conjugated polymers constitutes a major low-cost manufacturing method for the fabrication of many new organic optoelectronic devices. The solution self-assembly kinetics of π-conjugated rod-coil block copolymers of symmetric poly(3-hexyl thiophene)-b-poly(2-vinyl pyridine) (P3HT-P2VP) during drying and the phase transformations of the subsequently dried samples were studied by using a combination of TEM, SAXS, WAXS and DSC measurements. During solution drying in chlorobenzene, a good solvent for the copolymer, P3HT-P2VP first formed nanoseed aggregates followed by the directional growth of nanofibrils driven by the formation of prevailing form II P3HT crystals within its nanofibril core confined by the surrounding domain of P2VP blocks. This result was in sharp contrast when a similar molecular weight P3HT homopolymer was solution self-assembled in chlorobenzene, nearly free from confinement, in which case the resulting nanofibrils consisted of a mixture of majority form I and form II crystals. Solvent-cast films of P3HT-P2VP nanofibrils with form II crystals were heat-/cold-treated and showed solid-state phase transformations from form II crystals to form I crystals, both within nanofibrils with annealing, indicating the metastability of the form II crystals with temperature. A disordered state followed with increasing temperatures which, when cooled, induced the formation of a thermodynamically stable lamellar phase with only form I P3HT crystals. Correspondingly, the study provides new strategies for controlling polymorphs and nanostructures of π-conjugated block copolymers for future applications using solution processing and subsequent heat treatment.


Subject(s)
Nanofibers/chemistry , Polyvinyls/chemistry , Thiophenes/chemistry , Crystallization
3.
ACS Appl Mater Interfaces ; 5(3): 1009-16, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23323972

ABSTRACT

Colloid TiO(2) nanorods are used for solution-processable poly(3-hexyl thiophene): TiO(2) hybrid solar cell. The nanorods were covered by insulating ligand of oleic acid (OA) after sol-gel synthesis. Three more conducting pyridine type ligands: pyridine, 2,6-lutidine (Lut) and 4-tert-butylpyridine (tBP) were investigated respectively to replace OA. The power conversion efficiency (PCE) of the solar cell was increased because the electronic mobility of pyridine-type ligand-modified TiO(2) is higher than that of TiO(2)-OA. The enhancement of PCE is in the descending order of Lut > pyridine > tBP because of the effective replacement of OA by Lut. The PCE of solar cell can be further enhanced by ligand exchange of pyridine type ligand with conjugating molecule of 2-cyano-3-(5-(7-(thiophen-2-yl)-benzothiadiazol-4-yl) thiophen-2-yl) acrylic acid (W4) on TiO(2) nanorods because W4 has aligned bandgap with P3HT and TiO(2) to facilitate charge separation and transport. The electronic mobility of two-stage ligand exchanged TiO(2) is improved furthermore except Lut, because it adheres well and difficult to be replaced by W4. The amount of W4 on TiO(2)-tBP is 3 times more than that of TiO(2)-Lut (0.20 mol % vs. 0.06 mol %). Thus, the increased extent of PCE of solar cell is in the decreasing order of tBP > pyridine > Lut. The TiO(2)-tBP-W4 device has the best performance with 1.4 and 2.6 times more than TiO(2)-pyridine-W4 and TiO(2)-Lut-W4 devices, respectively. The pKa of the pyridine derivatives plays the major role to determine the ease of ligand exchange on TiO(2) which is the key factor mandating the PCE of P3HT:TiO(2) hybrid solar cell. The results of this study provide new insights of the significance of acid-base reaction on the TiO(2) surface for TiO(2)-based solar cells. The obtained knowledge can be extended to other hybrid solar cell systems.

4.
Langmuir ; 27(1): 109-15, 2011 Jan 04.
Article in English | MEDLINE | ID: mdl-21141849

ABSTRACT

An ordered nanostructure can be created from the hybrid materials of self-assembly poly(3-hexyl thiophene-b-2-vinyl pyridine) and nicotinic acid-modified titanium dioxide nanoparticles (P3HT-b-P2VP/TiO(2)). TEM and XRD analyses reveal that the TiO(2) nanoparticles (NPs) are preferentially confined in the P2VP domain of P3HT-b-P2VP whereas TiO(2) NPs interact with either pure P3HT or a blend of P3HT and P2VP to produce microsized phase segregation. The morphologies of lamellar and cylindrical structures are disturbed when the loading of TiO(2) NPs is 40 wt % or higher. Cylindrical P3HT-b-P2VP/TiO(2) exhibits a small blue shift in absorption and photoluminescence spectra with increasing TiO(2) loading as compared to P3HT/TiO(2). The NPs cause a slightly misaligned P3HT domain in the copolymer. Furthermore, the PL quenching of P3HT-b-P2VP/TiO(2) becomes very large as a result of efficient charge separation in the ordered nanodomain at 16 nm. Solar cells fabricated from self-assembly P3HT-b-P2VP/TiO(2) hybrid materials exhibit a >30 fold improvement in power conversion efficiency as compared to the corresponding 0.3P3HT-0.7P2VP/TiO(2) polymer blend hybrid. This study paves the way for the further development of high-efficiency polymer-inorganic nanoparticle hybrid solar cells using a self-assembled block copolymer.

5.
Nanoscale ; 2(8): 1448-54, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20820733

ABSTRACT

This is an in depth study on the surface potential changes of P3HT/TiO(2) nanorod bulk heterojunction thin films. They are affected by interlayer structures, the molecular weight of P3HT, the processing solvents and the surface ligands on the TiO(2). The addition of an electron blocking layer and/or the hole blocking layer to the P3HT/TiO(2) thin film can facilitate charge carrier transport and result in a high surface potential shift. The changes in surface potential of multilayered bulk heterojunction films are closely correlated to their power conversion efficiency of photovoltaic devices. Changing ligand leads to the largest change in surface potential yielding the greatest effect on the power conversion efficiency. Merely changing the P3HT molecular weight is less effective and varying the processing solvents is least effective in increasing power conversion efficiency. The steric effect of the ligand has a large influence on the reduction of charge carrier recombination resulting in a great effect on the power conversion efficiency. By monitoring the changes in the surface potential of bulk heterojunction film of multilayer structures, we have obtained a useful guide for the fabrication of high performance photovoltaic devices.


Subject(s)
Nanotubes/chemistry , Organoselenium Compounds/chemistry , Titanium/chemistry , Nanotechnology/instrumentation , Nanotubes/ultrastructure , Polymers/chemistry , Solvents/chemistry , Surface Properties
6.
J Phys Chem B ; 114(32): 10277-84, 2010 Aug 19.
Article in English | MEDLINE | ID: mdl-20666566

ABSTRACT

A novel photoluminescence electron beam resist made from the blend of poly(3-hexylthiophene) (P3HT) and poly(methyl methacrylate) (PMMA) has been successfully developed in this study. In order to optimize the resolution of the electron beam resist, the variations of nanophase separated morphology produced by differing blending ratios were examined carefully. Concave P3HT-rich island-like domains were observed in the thin film of the resist. The size of concave island-like domains decreased from 350 to 100 nm when decreasing the blending ratio of P3HT/PMMA from 1:5 to 1:50 or lower, concurrently accompanied by significant changes in optical properties and morphological behaviors. The lambda(max) of the film absorption is blue-shifted from 520 to 470 nm, and its lambda(max) of photoluminescence (PL) is also shifted from 660 to 550 nm. The radiative lifetime is shorter while the luminescence efficiency is higher when the P3HT/PMMA ratio decreases. These results are attributed to the quantum confinement effect of single P3HT chain isolated in PMMA matrix, which effectively suppresses the energy transfer between the well-separated polymer chains of P3HT. The factors affecting the resolution of the P3HT/PMMA electron beam resists were systematically investigated, including blending ratios and molecular weight. The photoluminescence resist with the best resolution was fabricated by using a molecular weight of 13 500 Da of P3HT and a blending ratio of 1:1000. Furthermore, high-resolution patterns can be obtained on both flat silicon wafers and rough substrates made from 20 nm Au nanoparticles self-assembled on APTMS (3-aminopropyltrimethoxysilane)-coated silicon wafers. Our newly developed electron beam resist provides a simple and convenient approach for the fabrication of nanoscale photoluminescent periodic arrays, which can underpin many optoelectronic applications awaiting future exploration.

SELECTION OF CITATIONS
SEARCH DETAIL
...