Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
J Enzyme Inhib Med Chem ; 39(1): 2288806, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38153119

ABSTRACT

Transarterial chemoembolisation (TACE) is used for unresectable hepatocellular carcinoma (HCC) treatment, but TACE-induced hypoxia leads to poor prognosis. The anti-cancer effects of soybean isoflavones daidzein derivatives 7,3',4'-trihydroxyisoflavone (734THIF) and 7,8,4'-trihydroxyisoflavone (784THIF) were evaluated under hypoxic microenvironments. Molecular docking of these isomers with cyclooxygenase-2 (COX-2) and vascular endothelial growth factor receptor 2 (VEGFR2) was assessed. About 40 µM of 734THIF and 784THIF have the best effect on inhibiting the proliferation of HepG2 cells under hypoxic conditions. At a concentration of 40 µM, 784THIF significantly inhibits COX-2 expression in pre-hypoxia conditions compared to 734THIF, with an inhibition rate of 67.73%. Additionally, 40 µM 784THIF downregulates the expression of hypoxic, inflammatory, and metastatic-related proteins, regulates oxidative stress, and inhibits the expression of anti-apoptotic proteins. The uptake by HepG2 confirmed higher 784THIF level and slower degradation characteristics under post- or pre-hypoxic conditions. In conclusion, our results showed that 784THIF had better anti-cancer effects and cellular uptake than 734THIF.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Hep G2 Cells , Cyclooxygenase 2/metabolism , Vascular Endothelial Growth Factor A , Molecular Docking Simulation , Hypoxia , Tumor Microenvironment
2.
Biology (Basel) ; 12(11)2023 Oct 29.
Article in English | MEDLINE | ID: mdl-37997982

ABSTRACT

In this study, Salmonella Typhimurium, Escherichia coli, and Listeria monocytogenes were separately inoculated in sterilized carrot juice and subjected to various types of high-pressure processing (HPP) at 200-600 MPa for 0.1-15 min to observe the effects of HPP on the inactivation kinetics of foodborne pathogens in carrot juice. The first-order model fits the destruction kinetics of high pressure on foodborne pathogens during the pressure hold period. An increase in pressure from 200 to 600 MPa decreased the decimal reduction time (D values) of S. Typhimurium, E. coli, and L. monocytogenes. Under pressure ≥ 400 MPa, the D values of E. coli were significantly higher than those of S. Typhimurium and L. monocytogenes, indicating that E. coli had greater resistance to high pressures than the others. The Zp values (the pressure range that causes the D values to change by 90%) of E. coli, S. Typhimurium, and L. monocytogenes were 195, 175, and 170 MPa, respectively. These results indicated that L. monocytogenes and E. coli were the most and least sensitive, respectively, to pressure changes. Additionally, the three bacteria were separately inoculated into thermal-sterilized carrot juice and subjected to 200-600 MPa HPP for 3 min. The treated carrot juices were stored at 4 °C for 27 d. Following S. Typhimurium and E. coli inoculation, the bacterial counts of the control and 200 MPa treatments remained the same during the storage duration. However, they decreased for the 300 and 400 MPa treatment groups with increasing storage duration. During the storage period, no bacterial growth was observed in the 500 and 600 MPa treatments. However, the bacterial number for the control and pressure treatment groups increased with prolonged storage duration following inoculation with L. monocytogenes. Therefore, following HPP, residual L. monocytogenes continued growing stably at low temperatures. Overall, HPP could inhibit and delay the growth of S. Typhimurium and E. coli in carrot juice during cold storage, but it was ineffective at inhibiting the growth of L. monocytogenes. There was a risk of foodborne illness despite the low-temperature storage of juice. The innovation of this preliminary study is to find the impact of high pressure on the inactivate kinetics of three food pathogens in carrot juice and its practical application in simulated contaminated juice.

3.
Foods ; 12(16)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37628106

ABSTRACT

This study examines the impact of blanching (heating at 85 °C for 60 s), high-pressure processing (HPP) (600 MPa, 3 min, 20 °C), and a combination of both blanching and HPP on the microbiological and chemical qualities, colour, and antioxidant properties of carrot juice stored at 4 °C for 15 days. In terms of microbiological quality, the total plate count (TPC), coliform bacteria, and Salmonella spp. rose rapidly in the control group (untreated) as the storage time increased. However, for the blanching group, these values climbed more gradually, surpassing the microbiological limits for juice beverages (TPC < 4 log CFU/mL, Coliform < 10 MPN/mL, and Salmonella spp. negative) on the 9 days of storage. In contrast, TPC, coliforms, and Salmonella spp. were undetectable in the HPP and blanching/HPP samples throughout the storage period. Additionally, as storage time lengthened, the pH, total soluble solids, and Hunter colour values (L, a, b) diminished in the control and blanching groups, whilst titratable acidity and browning degree intensified. However, the HPP and blanching/HPP noticeably delayed these decreases or increases. Moreover, although the total phenolic content and DPPH radical scavenging ability in the HPP samples remained relatively stable during storage and were lower compared to other groups, the ß-carotene content was higher at the end of the storage period. In summary, HPP can effectively deactivate microorganisms in carrot juice, irrespective of whether blanching is applied, and can impede reductions in pH, increases in acidity, and colour changes, ultimately extending the juice's shelf life.

4.
Pharmaceutics ; 15(3)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36986766

ABSTRACT

Excessive exposure to ultraviolet radiation (UV) can induce oxidative stress through the over-production of reactive oxygen species (ROS) on the skin. Myricetin (MYR), a natural flavonoid compound, significantly inhibited UV-induced keratinocyte damage; however, its bioavailability is limited by its poor water solubility and inefficient skin penetration ability, which subsequently influences its biological activity. The purpose of the study was to develop a myricetin nanofibers (MyNF) system of hydroxypropyl-ß-cyclodextrin (HPBCD)/polyvinylpyrrolidone K120 (PVP)-loaded with MYR that would enhance the water solubility and skin penetration by changing the physicochemical characteristics of MYR, including reducing the particle size, increasing the specific surface area, and amorphous transformation. The results also revealed that the MyNF can reduce cytotoxicity in HaCaT keratinocytes when compared with MYR; additionally, MyNF had better antioxidant and photoprotective activity than raw MYR for the UVB-induced HaCaT keratinocytes damage model due to the MyNF increased water solubility and permeability. In conclusion, our results demonstrate that MyNF is a safe, photostable, and thermostable topical ingredient of antioxidant nanofibers to enhance the skin penetration of MYR and prevent UVB-induced skin damage.

5.
Biology (Basel) ; 12(2)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36829535

ABSTRACT

We assessed the microbial and chemical qualities and microbiomes of 14 mustard pickle products coded sequentially from A to N and sold in traditional Taiwanese markets. The results showed that the aerobic plate count and lactic acid bacteria count of commercially available mustard pickle products were 2.18-4.01 and <1.0-3.77 log CFU/g, respectively. Moreover, no coliform bacteria, Escherichia coli, Staphylococcus aureus, Salmonella spp., or Listeria monocytogenes were detected in any of the samples. Analysis of the chemical quality showed that the sulfite content of all samples exceeded 30 ppm, which is the food additive limit in Taiwan. Furthermore, the mean contents of eight biogenic amines in the mustard pickle product samples were below 48.0 mg/kg. The results of high-throughput sequencing showed that the dominant bacterial genera in sample A were Proteus spp. (25%), Vibrio (25%), and Psychrobacter (10%), in sample C they were Weissella (62%) and Lactobacillus (15%), in sample E it was Lactobacillus (97%), and in sample J it was Companilactobacillus (57%). Mustard pickle product samples from different sources contained different microbiomes. The dominant bacterial family was Lactobacillaceae in all samples except for sample A. In contrast, the microbiome of sample A mainly consisted of Morganellaceae and Vibrionaceae, which may have resulted from environmental contamination during storage and sales. The result of this work suggests it may be necessary to monitor sulfite levels and potential sources of bacterial contamination in mustard pickle products, and to take appropriate measures to rule out any public health risks.

6.
Foods ; 12(2)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36673409

ABSTRACT

This study aimed to assess the use of the high-hydrostatic-pressure (HHP) method (200-600 MPa, 5 min) for bleaching mustard pickle products as an alternative to the conventional method of sulfite addition. The aerobic plate count (APC) and lactic acid bacteria count (LAB) of the samples decreased with the increase in pressure, and the yeast count decreased to no detectable levels. Next, compared with the control group (no high-pressure treatment) the L* (lightness), W (whiteness), ΔE (color difference), and texture (hardness and chewiness) of the HHP-processed samples, which increased significantly with increasing pressure, while the a* (redness) and b* (yellowness) values decreased slightly. This indicates that HHP processing gave the mustard pickle a harder texture and a brighter white color and appearance. Furthermore, when the mustard pickle was treated with HHP 400 and 600 MPa for 5 min and stored at 25 °C for 60 days, it was found that the APC and LAB counts in the HHP-processed group recovered rapidly and did not differ from those in the control group (the non-HHP treated group) but significantly delayed the growth of yeast, the increase in pH value, and total volatile basic nitrogen (TVBN). The high-throughput sequencing (HTS) analysis revealed that the predominant bacterial genera in the non-HHP-treated mustard pickle were Lactiplantibacillus (74%), Lactilactobacillus (12%), and Levilactobacillus (6%); after 60 days of storage, Companilactobacillus (80%) became dominant. However, after 60 days of storage, Lactiplantibacillus (92%) became dominant in the samples processed at 400 MPa, while Levilactobacillus (52%), Pediococcus (17%), and Lactiplantibacillus (17%) became dominant in the samples processed at 600 MPa. This indicated that the HHP treatment changed the lactic acid bacterial flora of the mustard pickle during the storage period. Overall, it is recommended to treat the mustard pickle with HHP above 400 MPa for 5 min to improve its texture and color and delay the deterioration of quality during storage. Therefore, HHP technology has the potential to be developed as a treatment technique to replace the addition of sulfite.

7.
Antioxidants (Basel) ; 11(11)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36421490

ABSTRACT

Particulate matter (PM) is one of the reasons that exacerbate skin diseases. Impaired barrier function is a common symptom in skin diseases, including atopic dermatitis, eczema and psoriasis. Herbal extracts rich in antioxidants are thought to provide excellent pharmacological activities; however, the anti-pollution activity of Artocarpus altilis extract (AAM) has not been investigated yet. The present study demonstrated that 5 µg/mL of AAM was considered to be a safe dose for further experiments without cytotoxicity. Next, we evaluated the anti-pollution activity of AAM through the PM-induced keratinocytes damage cell model. The results showed that AAM could reduce PM-induced overproduction of intracellular ROS and the final product of lipid peroxidation, 4-hydroxynonenal (4HNE). In addition, AAM not only reduced the inflammatory protein expressions, including tumor necrosis factor α (TNFα), TNF receptor 1 (TNFR1) and cyclooxygenase-2 (COX-2), but also balanced the aging protein ratio of matrix metalloproteinase (MMPs) and tissue inhibitors of metalloproteases (TIMPs) through downregulating the phosphorylation of mitogen-activated protein kinase (MAPK) signaling. For skin barrier protection, AAM could repair PM-induced barrier function proteins damage, including filaggrin, loricrin and aquaporin 3 for providing anti-aging bioactivity. In conclusion, AAM has the potential to be developed as an anti-pollution active ingredient for topical skin products to prevent skin oxidation, inflammation and aging, and restore the skin barrier function.

8.
Antioxidants (Basel) ; 11(9)2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36139829

ABSTRACT

Ultraviolet B (UVB) is one of the most important environmental factors that cause extrinsic aging through increasing intracellular reactive oxygen species (ROS) production in the skin. Due to its protective roles against oxidative stress, nuclear factor erythroid-2-related factor (NRF2) has been traditionally considered as a target for skin aging prevention. Here, we identified the extract of Prinsepiae Nux, a top-grade drug listed in Shen Nong Ben Cao Jing, as a potent NRF2 activator by high-throughput screening. A bioassay-guided fractionation experiment revealed that NRF2-activating components were concentrated in the 90% methanol (MP) fraction. MP fraction significantly increased the expression of NRF2 and HO-1 protein and upregulated HO-1 and NQO1 mRNA expression in HaCaT cells. Moreover, MP fraction pre-treatment dramatically reversed UVB-induced depletion of NRF2 and HO-1, accumulation of intracellular ROS, NF-κB activation, and the upregulation of pro-inflammatory genes. Finally, the qualitative analysis using UPLC-tandem mass spectroscopy revealed the most abundant ion peak in MP fraction was identified as α-linolenic acid, which was further proved to activate NRF2 signaling. Altogether, the molecular evidence suggested that MP fraction has the potential to be an excellent source for the discovery of natural medicine to treat/prevent UVB-induced skin damage.

9.
Antioxidants (Basel) ; 11(6)2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35740084

ABSTRACT

Recently, a global market for anti-aging skin care using botanicals has been noticeably developing. Morin, 3,5,7,2',4'-pentahydroxyflavone, is a polyphenol with many pharmacological properties including antioxidant, anti-inflammation and photoprotection. However, poor aqueous solubility of morin restricts its application in pharmaceuticals. The present study aimed to encapsulate morin into liposomal vesicles to improve its water solubility and skin penetration, and further investigated its ROS inhibition and anti-aging activity in HaCaT keratinocytes induced by particulate matters (PMs). Our data presented that morin was a strong DPPH• radical scavenger. Morin displayed a remarkable ROS inhibitory ability and protected keratinocytes against PMs by downregulating matrix metalloproteinase-1 (MMP-1) expression via suppressing p-ERK and p-p38 in the MAPK pathway. Moreover, water solubility of liposomal morin (LM) prepared by the thin film hydration method was significantly better than free form of morin due to particle size reduction of LM. Our results also demonstrated that deformable liposomal vesicles were achieved for increasing dermal absorption. Additionally, LM (morin:lecinolws-50:tween-80:PF-68, 1:2.5:2.5:5) was able to effectively reduce generation of ROS, inactivate p-ERK, p-p38 and MMP-1 in HaCaT cells exposed to PM. In conclusion, our findings suggested that LM would be a bright candidate for various topical anti-aging and anti-pollution products.

10.
Antioxidants (Basel) ; 10(10)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34679686

ABSTRACT

Particulate matter (PM) is the main indicator of air pollutants, and it may increase the level of reactive oxygen species (ROS) in keratinocytes, leading to skin inflammation, aging, and decreased moisturizing ability. Pterostilbene (PTS) is a dimethylated analog of resveratrol that has antioxidant effects. However, the molecular mechanisms of PTS in preventing PM-induced keratinocyte inflammation and aging have not been investigated yet. Therefore, we used PM-induced human keratinocytes to investigate the protective mechanisms of PTS. The results showed that 20 µM PTS had no toxicity to HaCaT keratinocytes and significantly reduced PM-induced intracellular ROS production. In addition, nuclear translocation of the aryl hydrocarbon receptor (AHR) was inhibited by PTS, leading to reduced expression of its downstream CYP1A1. PTS further inhibited PM-induced MAPKs, inflammation (COX-2), and aging (MMP-9) protein cascades, and rescued moisturizing (AQP-3) protein expression. We analyzed the PTS content in cells at different time points and compared the concentration required for PTS to inhibit the target proteins. Finally, we used the skin penetration assay to show that the PTS essence mainly exists in the epidermal layer and did not enter the system circulation. In conclusion, PTS could protect HaCaT keratinocytes from PM-induced damage and has the potential to become a cosmetic ingredient.

11.
Pharmaceutics ; 13(9)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34575454

ABSTRACT

Antioxidants from plant extracts are often used as additives in skincare products to prevent skin problems induced by environmental pollutants. Artocarpus communis methanol extract (ACM) has many biological effects, such as antioxidant, anti-inflammatory, wound healing, and photoprotective effects; however, the poor water solubility of raw ACM has limited its applications in medicine and cosmetics. Topical antioxidant nanoparticles are one of the drug-delivery systems for overcoming the poor water solubility of antioxidants for increasing their skin penetration. The present study demonstrated that ACM-loaded hydroxypropyl-ß-cyclodextrin and polyvinylpyrrolidone K30 nanoparticles (AHP) were successfully prepared and could effectively increase the skin penetration of ACM through changing the physicochemical characteristics of raw ACM, including reducing the particle size, increasing the surface area, and inducing amorphous transformation. Our results also revealed that AHP had significantly better antioxidant activity than raw ACM for preventing photocytotoxicity because the AHP formulation increased the cellular uptake of the ACM in UVB-irradiated HaCaT keratinocytes. In conclusion, our results suggest that AHP may be used as a good topical antioxidant nanoparticle for delivering ACM into deep layers of the skin for preventing UVB-induced skin problems.

12.
Antioxidants (Basel) ; 10(9)2021 Sep 02.
Article in English | MEDLINE | ID: mdl-34573043

ABSTRACT

Airborne particulate matter (PM) is one of the indicators of air pollution, and it is also the main factor causing oxidative stress in the skin. Oleanolic acid (OA), a natural terpenoid compound, effectively inhibited PM-induced skin aging; however, OA has poor water solubility and skin absorption, which limit its application in medicines and cosmetics. The aim of this study was to prepare oleanolic acid nanofibers (OAnf) and evaluate the effects of OA and OAnf in PM-treated keratinocytes. The results showed that OA dissolved in dissolved in dimethyl sulfoxide (DMSO) attenuated PM-induced reactive oxygen species overproduction, stress-activated protein kinase/Jun-amino-terminal kinase (SAPK/JNK) activation, and the expressions of inflammatory and skin-aging-related proteins. In addition, the nanofiber process of OA effectively improved the water solubility of OA more than 99,000-fold through changing its physicochemical properties, including a surface area increase, particle size reduction, amorphous transformation, and hydrogen bonding formation with excipients. The skin penetration ability of OAnf was consistently over 10-fold higher than that of OA. Moreover, when dissolved in PBS, OAnf displayed superior antioxidant, anti-inflammatory, and anti-skin aging activities in PM-treated keratinocytes than OA. In conclusion, our findings suggest that OAnf could be a topical antioxidant formulation to attenuate skin problems caused by PM.

13.
Antioxidants (Basel) ; 10(4)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33915987

ABSTRACT

Transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) plays a crucial role in regulating the expression of genes participating in cellular defense mechanisms against oxidative or xenobiotic insults. However, there is increasing evidence showing that hyperactivation of NRF2 is associated with chemoresistance in several cancers, including hepatocellular carcinoma (HCC), thus making NRF2 an attractive target for cancer therapy. Another important issue in cancer medication is the adverse effects of these substances on normal cells. Here, we attempted to identify a dual-selective NRF2 regulator that exerts opposite effects on NRF2-hyperactivated HCC cells and normal keratinocytes. An antioxidant response element driven luciferase reporter assay was established in Huh7 and HaCaT cells as high-throughput screening platforms. Screening of 3,000 crude extracts from the Taiwanese Indigenous Plant Extract Library resulted in the identification of Beilschmiedia tsangii (BT) root extract as a dual-selective NRF2 regulator. Multiple compounds were found to contribute to the dual-selective effects of BT extract on NRF2 signaling in two cell lines. BT extract reduced NRF2 protein level and target gene expression levels in Huh7 cells but increased them in HaCaT cells. Furthermore, notable combinatory cytotoxic effects of BT extract and sorafenib on Huh7 cells were observed. On the contrary, sorafenib-induced inflammatory reactions in HaCaT cells were reduced by BT extract. In conclusion, our results suggest that the combination of a selective NRF2 activator and inhibitor could be a practical strategy for fine-tuning NRF2 activity for better cancer treatment and that plant extracts or partially purified fractions could be a promising source for the discovery of dual-selective NRF2 regulators.

14.
Int J Nanomedicine ; 16: 867-879, 2021.
Article in English | MEDLINE | ID: mdl-33574667

ABSTRACT

PURPOSE: Transcatheter arterial chemoembolization (TACE) is a common clinical treatment for hepatocellular carcinoma (HCC). However, hypoxia induction after treatment might trigger tumor invasiveness and metastasis. Although pterostilbene (PTS) has antitumor effects, its chemoprevention in HepG2 cells under hypoxia has not been investigated yet. In addition, the poor water solubility of raw PTS limits its clinical application. Here, we prepared nanoparticles of PTS (PSN) and compared their antihepatoma activities with those of raw PTS in HepG2 under hypoxic conditions. MATERIALS AND METHODS: The PTS nanoparticle formulation was prepared by nanoprecipitation, using Eudragit® e100 (EE) and polyvinyl alcohol (PVA) as carriers. We analyzed the physicochemical properties of raw PTS and PSN, including yield, encapsulation efficiency, water-solubility, particle size, morphology, crystalline-to-amorphous transformation, and molecular interaction between PTS and carriers. We also evaluated their antihepatoma activities under hypoxia treatment in HepG2 cells, including cell viability, hypoxia, and apoptosis. RESULTS: The yield and encapsulation efficiency of PSN were 86.33% and >99%, respectively. The water solubility and drug release of PTS were effectively improved after nanoprecipitation corresponding to the reduction in particle size, amorphous transformation, and formation of hydrogen bonding with carriers. PSN had a better cytotoxic effect than raw PTS in HepG2 under pre- and post-hypoxia conditions. In addition, hypoxia- and apoptosis-related proteins in HepG2 cells under two different hypoxic conditions were significantly inhibited by PSN compared with the control group with hypoxia only, except for HIF-1α in the post-hypoxia group. PSN was also significantly better in inhibiting these proteins, except for Bcl2, under pre-hypoxic conditions. CONCLUSION: Our results suggested that PSN could improve the water solubility and drug release of PTS and enhance the efficacy of HCC treatment under hypoxic conditions.


Subject(s)
Carcinoma, Hepatocellular/drug therapy , Down-Regulation , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Liver Neoplasms/drug therapy , Nanoparticles/chemistry , Stilbenes/therapeutic use , Tumor Hypoxia , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Carcinoma, Hepatocellular/pathology , Cell Hypoxia/drug effects , Cell Survival/drug effects , Crystallization , Down-Regulation/drug effects , Drug Liberation , Hep G2 Cells , Humans , Hydrogen Bonding , Liver Neoplasms/pathology , Neoplasm Invasiveness , Particle Size , Proton Magnetic Resonance Spectroscopy , Solubility , Spectroscopy, Fourier Transform Infrared , Stilbenes/chemistry , Stilbenes/pharmacology , Tumor Hypoxia/drug effects
15.
Article in English | WPRIM (Western Pacific) | ID: wpr-890217

ABSTRACT

Repetitive transcranial magnetic stimulation (rTMS) and intermittent theta-burst stimulation (iTBS) are evidenced-based treatments for patients with major depressive disorder (MDD) who fail to respond to standard first-line therapies. However, although various TMS protocols have been proven to be clinically effective, the response rate varies across clinical applications due to the heterogeneity of real-world psychiatric comorbidities, such as generalized anxiety disorder, posttraumatic stress disorder, panic disorder, or substance use disorder, which are often observed in patients with MDD. Therefore, individualized treatment approaches are important to increase treatment response by assigning a given patient to the most optimal TMS treatment protocol based on his or her individual profile. This literature review summarizes different rTMS or TBS protocols that have been applied in researches investigating MDD patients with certain psychiatric comorbidities and discusses biomarkers that may be used to predict rTMS treatment response. Furthermore, we highlight the need for the validation of neuroimaging and electrophysiological biomarkers associated with rTMS treatment responses. Finally, we discuss on which directions future efforts should focus for developing the personalization of the treatment of depression with rTMS or iTBS.

16.
Article in English | WPRIM (Western Pacific) | ID: wpr-897921

ABSTRACT

Repetitive transcranial magnetic stimulation (rTMS) and intermittent theta-burst stimulation (iTBS) are evidenced-based treatments for patients with major depressive disorder (MDD) who fail to respond to standard first-line therapies. However, although various TMS protocols have been proven to be clinically effective, the response rate varies across clinical applications due to the heterogeneity of real-world psychiatric comorbidities, such as generalized anxiety disorder, posttraumatic stress disorder, panic disorder, or substance use disorder, which are often observed in patients with MDD. Therefore, individualized treatment approaches are important to increase treatment response by assigning a given patient to the most optimal TMS treatment protocol based on his or her individual profile. This literature review summarizes different rTMS or TBS protocols that have been applied in researches investigating MDD patients with certain psychiatric comorbidities and discusses biomarkers that may be used to predict rTMS treatment response. Furthermore, we highlight the need for the validation of neuroimaging and electrophysiological biomarkers associated with rTMS treatment responses. Finally, we discuss on which directions future efforts should focus for developing the personalization of the treatment of depression with rTMS or iTBS.

17.
Pharmaceutics ; 12(6)2020 Jun 13.
Article in English | MEDLINE | ID: mdl-32545836

ABSTRACT

Resveratrol is a naturally occurring polyphenol compound which has been shown to possess antioxidant and anti-inflammatory properties. However, its pharmaceutical applications are limited by its poor water solubility. In this study, we used electrospinning technology to synthesize nanofibers of polyvinylpyrrolidone (PVP) and hydroxypropyl-ß-cyclodextrin (HPBCD) loaded with resveratrol. We used X-ray diffractometry to analyze crystalline structure, Fourier transform infrared spectroscopy to determine intermolecular hydrogen bonding, antioxidant assays to measure antioxidant activity, and Franz diffusion cells to evaluate skin penetration. Our results showed that the aqueous solubility of resveratrol nanofibers was greatly improved (by more than 20,000-fold) compared to the pure compound. Analysis of physicochemical properties demonstrated that following nanofiber formation, resveratrol was converted from a crystalline to amorphous structure, and resveratrol formed new intermolecular bonds with PVP and HPBCD. Moreover, resveratrol nanofibers showed good antioxidant activity. In addition, the skin penetration ability of resveratrol in the nanofiber formulation was greater than that of pure resveratrol. Furthermore, resveratrol nanofibers suppressed particulate matter (PM)-induced expression of inflammatory proteins (COX-2 and MMP-9) in HaCaT keratinocytes. Therefore, resveratrol-loaded nanofibers can effectively improve the solubility and physicochemical properties of resveratrol, and may have potential applications as an antioxidant and anti-inflammatory formulation for topical skin application.

18.
Pharmaceutics ; 11(8)2019 Aug 08.
Article in English | MEDLINE | ID: mdl-31398912

ABSTRACT

As is known, many antioxidants from plant extracts have been used as additives in skincare products to prevent skin damage following overexposure to environmental pollutants. 7,3',4'-trihydroxyisoflavone (734THIF), an isoflavone compound, possesses various biological activities, including antioxidant, antityrosinase, photodamage protection, and anticancer effects. Unfortunately, 734THIF has poor water solubility, which limits its skin penetration and absorption, and subsequently influences its biological activity. The aim of the present study was to investigate the mechanisms for the improvement in water solubility and skin penetration of 2-hydroxypropyl-ß-cyclodextrin (HPBCD) inclusion complex with 734THIF (5-7HP). We also determined its photostability, antipollutant activity in HaCaT keratinocytes, and moisturizing effect in human subjects. Our results showed that 734THIF was embedded into the lipophilic inner cavity of HPBCD and its water solubility and skin penetration were thereby improved through amorphous transformation, surface area enhancement, and hydrogen bonding formation between 734THIF and HPBCD. In addition, 5-7HP inhibited PM-induced ROS generation and then downregulated ROS-mediated COX-2 and MMP9 production and AQP-3 consumption by inhibiting the phosphorylation of MAPKs. Consequently, we suggest that 5-7HP is a safe and photostable topical ingredient to enhance the skin penetration of 734THIF and skin hydration, and therefore 5-7HP may be used as an antipollutant additive in skin care products.

19.
Phytomedicine ; 58: 152870, 2019 May.
Article in English | MEDLINE | ID: mdl-30903942

ABSTRACT

BACKGROUND: Avicequinone-B (Naphtho[2,3-b]furan-4,9-dione) is a furanonaphthoquinone derivative. It is a hydrophobic compound with poor aqueous solubility, which may restrict its potential pharmaceutical and biomedical applications. PURPOSE: We synthesized different liposomal formulations of Avicequinone-B, and measured their particle size, aqueous solubility, and physicochemical properties. In addition, we investigated the anticancer activity of liposomal Avicequinone-B in human cutaneous squamous cell carcinoma (SCC) cells. METHODS: Liposomal Avicequinone-B formulations were synthesized using the thin-film hydration method. Drug yield, encapsulation efficiency and aqueous solubility were determined by high performance liquid chromatography. Particle size and polydispersity index were measured by submicron particle size analyzer, and ultrastructural morphology was visualized by transmission electron microscopy. Thermal transitions were determined by differential scanning calorimetry. Anti-skin cancer activity was determined in HSC-1 cells (human cutaneous SCC cell line) using the MTS cytotoxicity assay, apoptosis was assessed by caspase-3/7 activity assay, mitochondrial membrane potential was determined by JC-10 assay, and signal transduction pathways were evaluated by Western blot analysis. RESULTS: Liposomal Avicequinone-B formulations showed adequate yield and high encapsulation efficiency. These liposomal formulations produced small, uniformly sized nanoparticles, and greatly increased the aqueous solubility of Avicequinone-B. Differential scanning calorimetry showed loss of thermal phase transitions. In addition, liposomal Avicequinone-B showed significant cytotoxic effect on HSC-1 cells, through reduction of mitochondrial membrane potential, increased cytosolic cytochrome-c level, increased cleaved caspase 8 level, and induction of apoptosis. This was mediated through activation of ERK, p38 and JNK signaling pathways. CONCLUSION: Liposomal Avicequinone-B demonstrated improved aqueous solubility and physicochemical characteristics, and induced apoptosis in cutaneous SCC cells. Therefore, liposomal Avicequinone-B may have potential uses as a topical anti-skin cancer drug formulation in the future.


Subject(s)
Apoptosis/drug effects , Benzoquinones/chemistry , Carcinoma, Squamous Cell/drug therapy , Drug Compounding , Liposomes/chemistry , Skin Neoplasms/drug therapy , Benzoquinones/pharmacology , Calorimetry, Differential Scanning , Caspase 8/drug effects , Caspase 8/metabolism , Cell Line, Tumor , Humans , Nanoparticles/chemistry , Particle Size , Solubility , Water/chemistry
20.
Phytomedicine ; 57: 174-182, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30776588

ABSTRACT

BACKGROUND: Saikosaponin-d (SSD) is a triterpene saponin isolated from Bupleurum plants. It has been shown to exhibit antioxidant, anti-inflammatory, and anticancer activities. However, its biomedical applications are limited by its poor water solubility. Cyclodextrins are highly water soluble oligosaccharide compounds which can form inclusion complexes with lipophilic drugs. PURPOSE: We complexed SSD with hydroxypropyl-ß-cyclodextrin (HPBCD) in various ratios to form SSD-HPBCD inclusion complexes. The inclusion complexes were evaluated for their solubility, physicochemical properties and cytotoxic effects in cutaneous squamous cell carcinoma cells. METHODS: Surface morphology of pure SSD and SSD-HPBCD inclusion complexes was evaluated by scanning electron microscopy. Crystalline structure was determined by X-ray diffractometry. Intermolecular hydrogen bond formation between SSD and HPBCD was investigated by Fourier transform infrared spectroscopy. Human cutaneous squamous cell carcinoma HSC-1 cell viability was determined by the MTS assay, and cell apoptosis by the caspase 3/7 assay. Signal transduction pathways were investigated by Western blotting. RESULTS: SSD-HPBCD inclusion complexes showed greatly increased water solubility. This was associated with an improvement in physicochemical properties, including transformation of crystalline structure to amorphous form, and formation of hydrogen bonds between SSD and HPBCD. In addition, SSD-HPBCD inclusion complexes induced apoptosis in HSC-1 cells, and this was mediated through activation of MAPK and suppression of Akt-mTOR signaling pathways. CONCLUSION: SSD-HPBCD inclusion complex shows improvement in water solubility and physicochemical properties, and exhibits anticancer effects against cutaneous squamous cell carcinoma cells. Therefore, it may be a potential drug formulation for the treatment of skin cancer.


Subject(s)
2-Hydroxypropyl-beta-cyclodextrin/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Carcinoma, Squamous Cell/drug therapy , Oleanolic Acid/analogs & derivatives , Saponins/pharmacology , Skin Neoplasms/drug therapy , Antineoplastic Agents, Phytogenic/chemistry , Bupleurum/chemistry , Cell Line, Tumor , Crystallography, X-Ray , Drug Compounding , Humans , Hydrogen Bonding , Magnetic Resonance Spectroscopy , Oleanolic Acid/chemistry , Oleanolic Acid/pharmacology , Saponins/chemistry , Solubility , Spectroscopy, Fourier Transform Infrared , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...