Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
3 Biotech ; 11(3): 136, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33643762

ABSTRACT

Therapeutic options for SARS-CoV-2 are limited merely to the symptoms or repurposed drugs and non-specific interventions to promote the human immune system. In the present study, chromatographic and in silico approaches were implemented to identify bioactive compounds which might play pivotal role as inhibitor for SARS-CoV-2 and human immunomodulator (TGF-ß and TNF-α). Tinospora cordifolia (Willd.) Miers was evaluated for phenolic composition and explored for bioactive compounds by high-performance thin layer chromatography (HPTLC). Furthermore, the bioactive compounds such as cordifolioside, berberine, and magnoflorine were appraised as human immunomodulatory and potent inhibitor against Main Protease (Mpro) of SARS-CoV-2 through multiple docking strategies. Cordifolioside formed six stable H-bonds with His41, Ser144, Cys145, His163, His164, and Glu166 of Mpro of SARS-CoV-2, which displayed a significant role in the viral replication/transcription during infection acting towards the common conserved binding cleft among all strains of coronavirus. Overall, the study emphasized that the proposed cordifolioside might use for future investigations, which hold as a promising scaffold for developing anti-COVID-19 drug and reduce human cytokine storm.

2.
J Immunol ; 197(7): 2583-8, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27566822

ABSTRACT

Exogenous IgE acts as an adjuvant in tumor vaccination in mice, and therefore a direct role of endogenous IgE in tumor immunosurveillance was investigated. By using genetically engineered mice, we found that IgE ablation rendered mice more susceptible to the growth of transplantable tumors. Conversely, a strengthened IgE response provided mice with partial or complete resistance to tumor growth, depending on the tumor type. By genetic crosses, we showed that IgE-mediated tumor protection was mostly lost in mice lacking FcεRI. Tumor protection was also lost after depletion of CD8(+) T cells, highlighting a cross-talk between IgE and T cell-mediated tumor immunosurveillance. Our findings provide the rationale for clinical observations that relate atopy with a lower risk for developing cancer and open new avenues for the design of immunotherapeutics relevant for clinical oncology.


Subject(s)
Immunoglobulin E/immunology , Immunologic Surveillance/immunology , Neoplasms/immunology , Receptors, IgE/immunology , Adjuvants, Immunologic , Animals , Genetic Engineering , Immunotherapy , Mice , Mice, Inbred BALB C , Mice, Knockout , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/therapy , Receptors, IgE/deficiency
3.
PeerJ ; 3: e1066, 2015.
Article in English | MEDLINE | ID: mdl-26290780

ABSTRACT

Neem (Azadirachta indica A. Juss) is one of the most versatile tropical evergreen tree species known in India since the Vedic period (1500 BC-600 BC). Neem tree is a rich source of limonoids, having a wide spectrum of activity against insect pests and microbial pathogens. Complex tetranortriterpenoids such as azadirachtin, salanin and nimbin are the major active principles isolated from neem seed. Absolutely nothing is known about the biochemical pathways of these metabolites in neem tree. To identify genes and pathways in neem, we sequenced neem genomes and transcriptomes using next generation sequencing technologies. Assembly of Illumina and 454 sequencing reads resulted in 267 Mb, which accounts for 70% of estimated size of neem genome. We predicted 44,495 genes in the neem genome, of which 32,278 genes were expressed in neem tissues. Neem genome consists about 32.5% (87 Mb) of repetitive DNA elements. Neem tree is phylogenetically related to citrus, Citrus sinensis. Comparative analysis anchored 62% (161 Mb) of assembled neem genomic contigs onto citrus chromomes. Ultrahigh performance liquid chromatography-mass spectrometry-selected reaction monitoring (UHPLC-MS/SRM) method was used to quantify azadirachtin, nimbin, and salanin from neem tissues. Weighted Correlation Network Analysis (WCGNA) of expressed genes and metabolites resulted in identification of possible candidate genes involved in azadirachtin biosynthesis pathway. This study provides genomic, transcriptomic and quantity of top three neem metabolites resource, which will accelerate basic research in neem to understand biochemical pathways.

4.
Biores Open Access ; 2(2): 107-17, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23593563

ABSTRACT

Adipose-derived stem/stromal cells (ASCs) are progenitor cells used in bone tissue engineering and regenerative medicine. Since Bichat's fat pad is easily accessible for dentists and maxillo-facial surgeons, we compared the features of ASCs from Bichat's fat pad (BFP-ASCs) with human ASCs from subcutaneous adipose tissue (SC-ASCs). BFP-ASCs isolated from a small amount of tissue were characterized for their stemness and multidifferentiative ability. They showed an important clonogenic ability and the typical mesenchymal stem cell immunophenotype. Moreover, when properly induced, osteogenic and adipogenic differentiation markers, such as alkaline phosphatase activity, collagen deposition and lipid vacuoles formation, were promptly observed. Growth of both BFP-ASCs and SC-ASCs in the presence of human serum and their adhesion to natural and synthetic scaffolds were also assessed. Both types of ASCs adapted rapidly to human autologous or heterologous sera, increasing their proliferation rate compared to standard culture condition, and all the cells adhered finely to bone, periodontal ligament, collagen membrane, and polyglycol acid filaments that are present in the oral cavity or are commonly used in oral surgery. At last, we showed that amelogenin seems to be an early osteoinductive factor for BFP-ASCs, but not SC-ASCs, in vitro. We conclude that Bichat's fat pad contains BFP-ASCs with stemness features that are able to differentiate and adhere to biological supports and synthetic materials. They are also able to proliferate in the presence of human serum. For all these reasons we propose BFP-ASCs for future therapies of periodontal defects and bone regeneration.

5.
Stem Cells Dev ; 22(8): 1252-63, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23190263

ABSTRACT

Over the last decade, it has been proved that mesenchymal stem cells (MSCs) elicit anti-inflammatory effects. MSCs from adipose tissue (hASCs) differentiate into cells of the mesodermal lineage and transdifferentiate into ectodermal-origin cells. Although there are various etiologies to chronic pain, one common feature is that painful states are associated with increased inflammation. We believe in hASCs as a therapeutic tool also in pathologies involving neuroinflammation and neuronal tissue damage. We have investigated the effect of hASCs injected in a model of neuropathic pain [(mouse sciatic nerve chronic constriction injury (CCI)]. hASCs from 5 donors were characterized, and no major differences were depicted. hASCs were cryopreserved and grown on demand. About 1×10(6), 3×10(6), and 6×10(6) hASCs were intravenously injected into normal immunocompetent mice. No mouse died, and no macroscopic toxicity or behavioral changes were observed, confirming the safety of hASCs. hASCs, intravenously (i.v.) injected into C57BL/6 mice when the neuropathic pain was already established, induced a significant reduction in mechanical allodynia and a complete reversion of thermal hyperalgesia in a dose-response fashion, already 1 day after administration. Moreover, the hASCs effect can be boosted by repeated administrations, allowing a prolonged therapeutic effect. Treatment decreased the level of the CCI-induced proinflammatory cytokine interleukin (IL)-1ß and activated the anti-inflammatory cytokine IL-10 in the lesioned nerve. hASCs treatment also restored normal inducible nitric oxide synthase expression in the spinal cord of CCI animals. Our data suggest that hASCs are worthy of further studies as an anti-inflammatory therapy in the treatment of neuropathic pain or chronic inflammatory diseases.


Subject(s)
Adipose Tissue/cytology , Adult Stem Cells/cytology , Neuralgia/surgery , Adult , Adult Stem Cells/transplantation , Animals , Blotting, Western , Disease Models, Animal , Female , Humans , Hyperalgesia/etiology , Hyperalgesia/metabolism , Hyperalgesia/surgery , Inflammation Mediators/metabolism , Injections, Intravenous , Interleukin-10/metabolism , Interleukin-1beta/metabolism , Male , Mice , Mice, Inbred C57BL , Middle Aged , Neuralgia/etiology , Neuralgia/metabolism , Nitric Oxide Synthase Type II/metabolism , Sciatic Neuropathy/complications , Sciatic Neuropathy/metabolism , Stem Cell Transplantation/methods , Time Factors
6.
J Immunol ; 188(1): 103-10, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-22124126

ABSTRACT

The IgE-mediated immune system activation can be redirected to combat tumors. Mouse and human IgE have been shown to provide a potent adjuvant effect in antitumor vaccination, with a crucial role played by FcεRI. This effect results from T cell-mediated adaptive immune response. Modified vaccinia virus Ankara (MVA) has been used to infect IgE-loaded tumor cells. These results led to a shift toward a highly safe protocol employing membrane IgE (mIgE), thus eliminating any possible anaphylactogenicity caused by circulating IgE. Evidence that human mIgE and a truncated version lacking IgE Fabs (tmIgE) bind and activate FcεRI has been fundamental and forms the core of this report. Human tmIgE has been engineered into a recombinant MVA (rMVA-tmIgE), and the expression of tmIgE and its transport to the surface of rMVA-tmIgE-infected cells has been detected by Western blot and cytofluorimetry, respectively. FcεRI activation by tmIgE has been confirmed by the release of ß-hexosaminidase in a cell-to-cell contact assay using human FcεRI-transfected RBL-SX38 cells. The rMVA-tmIgE antitumor vaccination strategy has been investigated in FcεRIα(-/-) human FcεRIα(+) mice, with results indicating a level of protection comparable to that obtained using soluble human IgE tumor cell loading. The rMVA-tmIgE vector represents a device that suits safe IgE-based antitumor vaccines, harboring the possibility to couple tmIgE with other gene insertions that might enhance the antitumor effect, thus bringing the field closer to the clinics.


Subject(s)
Cancer Vaccines/immunology , Cell Membrane/immunology , Immunoglobulin E/immunology , Neoplasms/immunology , Vaccinia virus , Animals , Cancer Vaccines/biosynthesis , Cancer Vaccines/genetics , Cell Line, Tumor , Cell Membrane/genetics , Cell Membrane/metabolism , Female , Humans , Immunoglobulin E/biosynthesis , Immunoglobulin E/genetics , Mice , Mice, Inbred BALB C , Mice, Knockout , Neoplasms/genetics , Neoplasms/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL
...