Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Front Genet ; 15: 1368843, 2024.
Article in English | MEDLINE | ID: mdl-38863443

ABSTRACT

Dengue has been one of the major public health problems in Malaysia for decades. Over 600,000 dengue cases and 1,200 associated fatalities have been reported in Malaysia from 2015 to 2021, which was 100% increase from the cumulative total of dengue cases reported during the preceding 07-year period from 2008 to 2014. However, studies that describe the molecular epidemiology of dengue in Malaysia in recent years are limited. In the present study, we describe the genetic composition and dispersal patterns of Dengue virus (DENV) by using 4,004 complete envelope gene sequences of all four serotypes (DENV-1 = 1,567, DENV-2 = 1,417, DENV-3 = 762 and DENV-4 = 258) collected across Malaysia from 2015 to 2021. The findings revealed that DENV populations in Malaysia were highly diverse, and the overall heterogeneity was maintained through repetitive turnover of genotypes. Phylogeography analyses suggested that DENV dispersal occurred through an extensive network, mainly among countries in South and East Asia and Malaysian states, as well as among different states, especially within Peninsular Malaysia. The results further suggested Selangor and Johor as major hubs of DENV emergence and spread in Malaysia.

2.
Viruses ; 14(12)2022 11 28.
Article in English | MEDLINE | ID: mdl-36560666

ABSTRACT

Japanese encephalitis virus (JEV) is an important arbovirus in Asia that can cause serious neurological disease. JEV is transmitted by mosquitoes in an enzootic cycle involving porcine and avian reservoirs, in which humans are accidental, dead-end hosts. JEV is currently not endemic in Singapore, after pig farming was abolished in 1992; the last known human case was reported in 2005. However, due to its location along the East-Asian Australasian Flyway (EAAF), Singapore is vulnerable to JEV re-introduction from the endemic regions. Serological and genetic evidence in the last decade suggests JEV's presence in the local fauna. In the present study, we report the genetic characterization and the first isolation of JEV from 3214 mosquito pools consisting of 41,843 Culex mosquitoes, which were trapped from April 2014 to May 2021. The findings demonstrated the presence of genotype I of JEV (n = 10), in contrast to the previous reports of the presence of genotype II of JEV in Singapore. The genetic analyses also suggested that JEV has entered Singapore on several occasions and has potentially established an enzootic cycle in the local fauna. These observations have important implications in the risk assessment and the control of Japanese encephalitis in non-endemic countries, such as Singapore, that are at risk for JEV transmission.


Subject(s)
Culex , Culicidae , Encephalitis Virus, Japanese , Encephalitis, Japanese , Swine , Animals , Humans , Encephalitis Virus, Japanese/genetics , Singapore/epidemiology , Encephalitis, Japanese/epidemiology , Encephalitis, Japanese/veterinary , Encephalitis, Japanese/prevention & control , Genotype
3.
Sci Rep ; 11(1): 13496, 2021 06 29.
Article in English | MEDLINE | ID: mdl-34188091

ABSTRACT

Dengue virus type 2 (DENV-2) contributes substantially to the dengue burden and dengue-related mortality in the tropics and sub-tropics. DENV-2 includes six genotypes, among which cosmopolitan genotype is the most widespread. The present study investigated the evolution, intra-genotype heterogeneity and dispersal of cosmopolitan genotype to understand unique genetic characteristics that have shaped the molecular epidemiology and distribution of cosmopolitan lineages. The spatial analysis demonstrated a wide geo-distribution of cosmopolitan genotype through an extensive inter-continental network, anchored in Southeast Asia and Indian sub-continent. Intra-genotype analyses using 3367 envelope gene sequences revealed six distinct lineages within the cosmopolitan genotype, namely the Indian sub-continent lineage and five other lineages. Indian sub-continent lineage was the most diverged among six lineages and has almost reached the nucleotide divergence threshold of 6% within E gene to qualify as a separate genotype. Genome wide amino acid signatures and selection pressure analyses further suggested differences in evolutionary characteristics between the Indian sub-continent lineage and other lineages. The present study narrates a comprehensive genomic analysis of cosmopolitan genotype and presents notable genetic characteristics that occurred during its evolution and global expansion. Whether those characteristics conferred a fitness advantage to cosmopolitan genotype in different geographies warrant further investigations.


Subject(s)
Dengue Virus/genetics , Evolution, Molecular , Genotype , Phylogeny , Viral Envelope Proteins/genetics , Dengue/epidemiology , Dengue/genetics , Humans
4.
Sci Total Environ ; 786: 147419, 2021 Sep 10.
Article in English | MEDLINE | ID: mdl-33964781

ABSTRACT

Wastewater-based surveillance for SARS-CoV-2 has been used for the early warning of transmission or objective trending of the population-level disease prevalence. Here, we describe a new use-case of conducting targeted wastewater surveillance to complement clinical testing for case identification in a small community at risk of COVID-19 transmission. On 2 July 2020, a cluster of COVID-19 cases in two unrelated households residing on different floors in the same stack of an apartment building was reported in Singapore. After cases were conveyed to healthcare facilities and six healthy household contacts were quarantined in their respective apartments, wastewater surveillance was implemented for the entire residential block. SARS-CoV-2 was subsequently detected in wastewaters in an increasing frequency and concentration, despite the absence of confirmed COVID-19 cases, suggesting the presence of fresh case/s in the building. Phone interviews of six residents in quarantine revealed that no one was symptomatic (fever/respiratory illness). However, when nasopharyngeal swabs from six quarantined residents were tested by PCR tests, one was positive for SARS-CoV-2. The positive case reported episodes of diarrhea and the case's stool sample was also positive for SARS-CoV-2, explaining the SARS-CoV-2 spikes observed in wastewaters. After the case was conveyed to a healthcare facility, wastewaters continued to yield positive signals for five days, though with a decreasing intensity. This was attributed to the return of recovered cases, who had continued to shed the virus. Our findings demonstrate the utility of wastewater surveillance as a non-intrusive tool to monitor high-risk COVID-19 premises, which is able to trigger individual tests for case detection, highlighting a new use-case for wastewater testing.


Subject(s)
COVID-19 , Humans , Prevalence , SARS-CoV-2 , Singapore , Wastewater
5.
Oncotarget ; 6(39): 42197-221, 2015 Dec 08.
Article in English | MEDLINE | ID: mdl-26517092

ABSTRACT

More than 30% of human protein-coding genes form hereditary complex genome architectures composed of sense-antisense (SA) gene pairs (SAGPs) transcribing their RNAs from both strands of a given locus. Such architectures represent important novel components of genome complexity contributing to gene expression deregulation in cancer cells. Therefore, the architectures might be involved in cancer pathways and, in turn, be used for novel drug targets discovery. However, the global roles of SAGPs in cancer pathways has not been studied. Here we investigated SAGPs associated with breast cancer (BC)-related pathways using systems biology, prognostic survival and experimental methods. Gene expression analysis identified 73 BC-relevant SAGPs that are highly correlated in BC. Survival modelling and metadata analysis of the 1161 BC patients allowed us to develop a novel patient prognostic grouping method selecting the 12 survival-significant SAGPs. The qRT-PCR-validated 12-SAGP prognostic signature reproducibly stratified BC patients into low- and high-risk prognostic subgroups. The 1381 SAGP-defined differentially expressed genes common across three studied cohorts were identified. The functional enrichment analysis of these genes revealed the GABPA gene network, including BC-relevant SAGPs, specific gene sets involved in cell cycle, spliceosomal and proteasomal pathways. The co-regulatory function of GABPA in BC cells was supported using siRNA knockdown studies. Thus, we demonstrated SAGPs as the synergistically functional genome architectures interconnected with cancer-related pathways and associated with BC patient clinical outcomes. Taken together, SAGPs represent an important component of genome complexity which can be used to identify novel aspects of coordinated pathological gene networks in cancers.


Subject(s)
Breast Neoplasms/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Signal Transduction/genetics , Breast Neoplasms/pathology , Cell Cycle/genetics , Female , GA-Binding Protein Transcription Factor/genetics , Gene Regulatory Networks/genetics , Humans , Kaplan-Meier Estimate , Oligonucleotide Array Sequence Analysis/methods , Oligonucleotide Array Sequence Analysis/statistics & numerical data , Prognosis , Proportional Hazards Models , RNA Interference , RNA, Antisense/genetics , RNA, Neoplasm/genetics , Reverse Transcriptase Polymerase Chain Reaction , Risk Factors
6.
Oncotarget ; 6(34): 36652-74, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26474389

ABSTRACT

Invasive ductal carcinoma (IDC) is a major histo-morphologic type of breast cancer. Histological grading (HG) of IDC is widely adopted by oncologists as a prognostic factor. However, HG evaluation is highly subjective with only 50%-85% inter-observer agreements. Specifically, the subjectivity in the assignment of the intermediate grade (histologic grade 2, HG2) breast cancers (comprising ~50% of IDC cases) results in uncertain disease outcome prediction and sub-optimal systemic therapy. Despite several attempts to identify the mechanisms underlying the HG classification, their molecular bases are poorly understood.We performed integrative bioinformatics analysis of TCGA and several other cohorts (total 1246 patients). We identified a 22-gene tumor aggressiveness grading classifier (22g-TAG) that reflects global bifurcation in the IDC transcriptomes and reclassified patients with HG2 tumors into two genetically and clinically distinct subclasses: histological grade 1-like (HG1-like) and histological grade 3-like (HG3-like). The expression profiles and clinical outcomes of these subclasses were similar to the HG1 and HG3 tumors, respectively. We further reclassified IDC into low genetic grade (LGG = HG1+HG1-like) and high genetic grade (HGG = HG3-like+HG3) subclasses. For the HG1-like and HG3-like IDCs we found subclass-specific DNA alterations, somatic mutations, oncogenic pathways, cell cycle/mitosis and stem cell-like expression signatures that discriminate between these tumors. We found similar molecular patterns in the LGG and HGG tumor classes respectively.Our results suggest the existence of two genetically-predefined IDC classes, LGG and HGG, driven by distinct oncogenic pathways. They provide novel prognostic and therapeutic biomarkers and could open unique opportunities for personalized systemic therapies of IDC patients.


Subject(s)
Breast Neoplasms/genetics , Carcinoma, Ductal, Breast/genetics , Breast Neoplasms/pathology , Carcinogenesis/genetics , Carcinoma, Ductal, Breast/pathology , Cohort Studies , Female , Genome, Human , Humans , Middle Aged , Prognosis , Transcriptome
8.
Nucleic Acids Res ; 43(W1): W527-34, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25883153

ABSTRACT

The possible formation of three-stranded RNA and DNA hybrid structures (R-loops) in thousands of functionally important guanine-rich genic and inter-genic regions could suggest their involvement in transcriptional regulation and even development of diseases. Here, we introduce the first freely available R-loop prediction program called Quantitative Model of R-loop Forming Sequence (RLFS) finder (QmRLFS-finder), which predicts RLFSs in nucleic acid sequences based on experimentally supported structural models of RLFSs. QmRLFS-finder operates via a web server or a stand-alone command line tool. This tool identifies and visualizes RLFS coordinates from any natural or artificial DNA or RNA input sequences and creates standards-compliant output files for further annotation and analysis. QmRLFS-finder demonstrates highly accurate predictions of the detected RLFSs, proposing new perspective to further discoveries in R-loop biology, biotechnology and molecular therapy. QmRLFS-finder is freely available at http://rloop.bii.a-star.edu.sg/?pg=qmrlfs-finder.


Subject(s)
DNA/chemistry , RNA/chemistry , Sequence Analysis, DNA/methods , Sequence Analysis, RNA/methods , Software , Algorithms , Internet , Models, Molecular , Nucleic Acid Conformation
9.
PLoS One ; 7(7): e42072, 2012.
Article in English | MEDLINE | ID: mdl-22848707

ABSTRACT

BACKGROUND: Epstein-Barr virus (EBV) encodes six nuclear transformation-associated proteins that induce extensive changes in cellular gene expression and signaling and induce B-cell transformation. The role of HIF1A in EBV-induced B-cell immortalization has not been previously studied. METHODS AND FINDINGS: Using Western blotting and Q-PCR, we found that HIF1A protein is stabilized in EBV-transformed lymphoblastoid cells. Western blotting, GST pulldown assays, and immunoprecipitation showed that EBV-encoded nuclear antigens EBNA-5 and EBNA-3 bind to prolylhydroxylases 1 and 2, respectively, thus inhibiting HIF1A hydroxylation and degradation. Immunostaining and Q-PCR showed that the stabilized HIF1A translocates to the nucleus, forms a heterodimer with ARNT, and transactivates several genes involved in aerobic glycolysis. Using biochemical assays and Q-PCR, we also found that lymphoblastoid cells produce high levels of lactate, lactate dehydrogenase and pyruvate. CONCLUSIONS: Our data suggest that activation of the aerobic glycolytic pathway, corresponding to the Warburg effect, occurs in EBV-transformed lymphoblastoid cells, in contrast to mitogen-activated B-cells.


Subject(s)
B-Lymphocytes/metabolism , B-Lymphocytes/virology , Cell Transformation, Viral , Glycolysis , Herpesvirus 4, Human/physiology , Hypoxia-Inducible Factor 1, alpha Subunit/chemistry , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Active Transport, Cell Nucleus , Aerobiosis , B-Lymphocytes/pathology , Cell Nucleus/metabolism , Epstein-Barr Virus Nuclear Antigens/metabolism , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , MCF-7 Cells , Procollagen-Proline Dioxygenase/metabolism , Protein Stability , Transcription, Genetic
10.
Int J Cancer ; 128(4): 817-25, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-20473904

ABSTRACT

We report that MDM2, a negative regulator of p53, can bind to EBNA-5. Using GST pull-down assay, immunoprecipitation, surface plasmon resonance and immunostaining of lymphoblastoid cells, we found that trimolecular complexes are formed between EBNA-5, MDM2 and p53, where MDM2 serves as a bridge. The EBNA-5 binding to MDM2 counteracted destabilizing effect of the latter on the p53. In ubiquitination and degradation assays in vitro, EBNA-5 inhibited p53 polyubiquitination (but not monoubiquitination) in a concentration-dependent manner. This resembles the effect of p14ARF on p53. Moreover, EBNA-5 was found to inhibit the degradation of p53 in vitro. High levels of p53 expression were maintained in LCLs. The binding of EBNA-5 to MDM2 also could impair the functional activity of p53. The p53-dependent genes P21 and VDR were not induced in EBV-infected, in contrast to mitogen-activated cells. This may explain the tolerance of established LCLs to high levels of p53 without undergoing apoptosis.


Subject(s)
B-Lymphocytes/metabolism , Breast Neoplasms/metabolism , Epstein-Barr Virus Nuclear Antigens/metabolism , Proto-Oncogene Proteins c-mdm2/metabolism , Trans-Activators , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , B-Lymphocytes/pathology , Blotting, Western , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cells, Cultured , Chromatin Immunoprecipitation , Epstein-Barr Virus Nuclear Antigens/genetics , Female , Humans , Protein Binding , Proto-Oncogene Proteins c-mdm2/genetics , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Surface Plasmon Resonance , Tumor Suppressor Protein p14ARF/genetics , Tumor Suppressor Protein p14ARF/metabolism , Tumor Suppressor Protein p53/antagonists & inhibitors , Ubiquitination
11.
BMC Genomics ; 12 Suppl 3: S24, 2011 Nov 30.
Article in English | MEDLINE | ID: mdl-22369099

ABSTRACT

BACKGROUND: Lung cancer is the leading cause of cancer deaths in the world. The most common type of lung cancer is lung adenocarcinoma (AC). The genetic mechanisms of the early stages and lung AC progression steps are poorly understood. There is currently no clinically applicable gene test for the early diagnosis and AC aggressiveness. Among the major reasons for the lack of reliable diagnostic biomarkers are the extraordinary heterogeneity of the cancer cells, complex and poorly understudied interactions of the AC cells with adjacent tissue and immune system, gene variation across patient cohorts, measurement variability, small sample sizes and sub-optimal analytical methods. We suggest that gene expression profiling of the primary tumours and adjacent tissues (PT-AT) handled with a rational statistical and bioinformatics strategy of biomarker prediction and validation could provide significant progress in the identification of clinical biomarkers of AC. To minimise sample-to-sample variability, repeated multivariate measurements in the same object (organ or tissue, e.g. PT-AT in lung) across patients should be designed, but prediction and validation on the genome scale with small sample size is a great methodical challenge. RESULTS: To analyse PT-AT relationships efficiently in the statistical modelling, we propose an Extreme Class Discrimination (ECD) feature selection method that identifies a sub-set of the most discriminative variables (e.g. expressed genes). Our method consists of a paired Cross-normalization (CN) step followed by a modified sign Wilcoxon test with multivariate adjustment carried out for each variable. Using an Affymetrix U133A microarray paired dataset of 27 AC patients, we reviewed the global reprogramming of the transcriptome in human lung AC tissue versus normal lung tissue, which is associated with about 2,300 genes discriminating the tissues with 100% accuracy. Cluster analysis applied to these genes resulted in four distinct gene groups which we classified as associated with (i) up-regulated genes in the mitotic cell cycle lung AC, (ii) silenced/suppressed gene specific for normal lung tissue, (iii) cell communication and cell motility and (iv) the immune system features. The genes related to mutagenesis, specific lung cancers, early stage of AC development, tumour aggressiveness and metabolic pathway alterations and adaptations of cancer cells are strongly enriched in the AC PT-AT discriminative gene set. Two AC diagnostic biomarkers SPP1 and CENPA were successfully validated on RT-RCR tissue array. ECD method was systematically compared to several alternative methods and proved to be of better performance and as well as it was validated by comparison of the predicted gene set with literature meta-signature. CONCLUSIONS: We developed a method that identifies and selects highly discriminative variables from high dimensional data spaces of potential biomarkers based on a statistical analysis of paired samples when the number of samples is small. This method provides superior selection in comparison to conventional methods and can be widely used in different applications. Our method revealed at least 23 hundreds patho-biologically essential genes associated with the global transcriptional reprogramming of human lung epithelium cells and lung AC aggressiveness. This gene set includes many previously published AC biomarkers reflecting inherent disease complexity and specifies the mechanisms of carcinogenesis in the lung AC. SPP1, CENPA and many other PT-AT discriminative genes could be considered as the prospective diagnostic and prognostic biomarkers of lung AC.


Subject(s)
Adenocarcinoma/genetics , Computational Biology/methods , Lung Neoplasms/genetics , Lung/metabolism , Adenocarcinoma/diagnosis , Algorithms , Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics , Cluster Analysis , Databases, Factual , Discriminant Analysis , Humans , Lung Neoplasms/diagnosis , Oligonucleotide Array Sequence Analysis , Prognosis
12.
Cell Mol Life Sci ; 67(24): 4249-56, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20593215

ABSTRACT

Epstein-Barr virus (EBV) is a human gamma herpes virus that infects B cells and induces their transformation into immortalized lymphoblasts that can grow as cell lines (LCLs) in vitro. EBNA-3 is a member of the EBNA-3-protein family that can regulate transcription of cellular and viral genes. The identification of EBNA-3 cellular partners and a study of its influence on cellular pathways are important for understanding the transforming action of the virus. In this work, we have identified the vitamin D receptor (VDR) protein as a binding partner of EBNA-3. We found that EBNA3 blocks the activation of VDR-dependent genes and protects LCLs against vitamin-D3-induced growth arrest and/or apoptosis. The presented data shed some light on the anti-apoptotic EBV program and the role of the EBNA-3-VDR interaction in the viral strategy.


Subject(s)
Epstein-Barr Virus Nuclear Antigens/metabolism , Gene Expression Regulation , Herpesvirus 4, Human/metabolism , Receptors, Calcitriol/metabolism , Animals , Calcifediol/metabolism , Cell Line , Cell Line, Tumor , Epstein-Barr Virus Nuclear Antigens/genetics , Herpesvirus 4, Human/genetics , Humans , Lymphocytes/cytology , Lymphocytes/physiology , Mass Spectrometry , Receptors, Calcitriol/genetics
13.
Comput Biol Med ; 39(11): 1036-42, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19762010

ABSTRACT

It is known that the EBNA-3 family proteins (EBNA-3, -4 and -6, alternative nomenclature EBNA-3A, B and C correspondingly) show a limited sequence similarity. We have analyzed EBNA-3 proteins both at the primary sequence and secondary structure levels. EBNA-3 and EBNA-4 were structurally more similar compared to other combinations with EBNA-6. We found "Stonin Homology Domain" profile in EBNA-4 and "Proline Rich Domain" in all EBNA-3 family of proteins. We have also found positive and negative charge clusters in all three proteins and mixed charge clusters in EBNA-3. Charged clusters are believed to play an important role in interactions with DNA or signaling proteins. Additionally, unique primary sequence repeats were found in all three proteins.


Subject(s)
Herpesvirus 4, Human/chemistry , Viral Proteins/chemistry , Amino Acid Sequence , Molecular Sequence Data , Protein Structure, Secondary , Protein Structure, Tertiary , Sequence Homology, Amino Acid
14.
PLoS One ; 4(5): e5231, 2009 May 29.
Article in English | MEDLINE | ID: mdl-19478941

ABSTRACT

BACKGROUND: Many different genetic alterations are observed in cancer cells. Individual cancer genes display point mutations such as base changes, insertions and deletions that initiate and promote cancer growth and spread. Somatic hypermutation is a powerful mechanism for generation of different mutations. It was shown previously that somatic hypermutability of proto-oncogenes can induce development of lymphomas. METHODOLOGY/PRINCIPAL FINDINGS: We found an exceptionally high incidence of single-base mutations in the tumor suppressor genes RASSF1 and RBSP3 (CTDSPL) both located in 3p21.3 regions, LUCA and AP20 respectively. These regions contain clusters of tumor suppressor genes involved in multiple cancer types such as lung, kidney, breast, cervical, head and neck, nasopharyngeal, prostate and other carcinomas. Altogether in 144 sequenced RASSF1A clones (exons 1-2), 129 mutations were detected (mutation frequency, MF = 0.23 per 100 bp) and in 98 clones of exons 3-5 we found 146 mutations (MF = 0.29). In 85 sequenced RBSP3 clones, 89 mutations were found (MF = 0.10). The mutations were not cytidine-specific, as would be expected from alterations generated by AID/APOBEC family enzymes, and appeared de novo during cell proliferation. They diminished the ability of corresponding transgenes to suppress cell and tumor growth implying a loss of function. These high levels of somatic mutations were found both in cancer biopsies and cancer cell lines. CONCLUSIONS/SIGNIFICANCE: This is the first report of high frequencies of somatic mutations in RASSF1 and RBSP3 in different cancers suggesting it may underlay the mutator phenotype of cancer. Somatic hypermutations in tumor suppressor genes involved in major human malignancies offer a novel insight in cancer development, progression and spread.


Subject(s)
Mutation/genetics , Neoplasms/genetics , Tumor Suppressor Proteins/genetics , APOBEC-1 Deaminase , Animals , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Cell Line , Cell Line, Tumor , Cell Proliferation , Clone Cells , Computational Biology , Cytidine Deaminase/metabolism , DNA, Bacterial/genetics , DNA, Complementary/genetics , Escherichia coli Proteins/genetics , Expressed Sequence Tags , Founder Effect , Genome/genetics , Hematopoiesis/genetics , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Mice , Mice, SCID , Polymerase Chain Reaction
15.
Proc Natl Acad Sci U S A ; 105(14): 5489-94, 2008 Apr 08.
Article in English | MEDLINE | ID: mdl-18391203

ABSTRACT

Epstein-Barr virus (EBV), like other DNA tumor viruses, induces an S-phase in the natural host cell, the human B lymphocyte. This is linked with blast transformation. It is believed that the EBV-encoded nuclear antigen 6 (EBNA-6) is involved in the regulation of cell cycle entry. However, the possible mechanism of this regulation is not approached. In our current study, we found that EBNA-6 binds to a MRPS18-2 protein, and targets it to the nucleus. We found that MRPS18-2 binds to both hypo- and hyperphosphorylated forms of Rb protein specifically. This binding targets the small pocket of pRb, which is a site of interaction with E2F1. The MRPS18-2 competes with the binding of E2F1 to pRb, thereby raising the level of free E2F1. Our experimental data suggest that EBNA-6 may play a major role in the entry of EBV infected B cells into the S phase by binding to and raising the level of nuclear MRPS18-2, protein. This would inhibit pRb binding to E2F1 competitively and lift the block preventing S-phase entry.


Subject(s)
Active Transport, Cell Nucleus , Antigens, Viral/metabolism , E2F1 Transcription Factor/metabolism , Epstein-Barr Virus Nuclear Antigens/metabolism , Mitochondrial Proteins/metabolism , Retinoblastoma Protein/metabolism , Ribosomal Proteins/metabolism , Antigens, Viral/physiology , Cell Line , DNA, Complementary , Epstein-Barr Virus Nuclear Antigens/physiology , Herpesvirus 4, Human/chemistry , Humans , Multiprotein Complexes/metabolism , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...