Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 192
Filter
1.
Int J Biol Macromol ; : 133496, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986999

ABSTRACT

Dengue virus (DENV) infection poses a global health threat, leading to severe conditions with the potential for critical outcomes. Currently, there are no specific drugs available whereas the vaccine does not offer comprehensive protection across all DENV serotypes. Therefore, the development of potential anti-viral agents is necessary to reduce the severity risk and interrupt the transmission circuit. The search for effective antiviral agents against DENV has predominantly focused on natural resources, particularly those demonstrating diverse biological activities and high safety profiles. Cyanobacteria and algae including Leptolyngbya sp., Spirulina sp., Chlorella sp., and Sargassum spp., which are prevalent species in Thailand, have been reported for their diverse biological activities and high safety profile but not specifically for anti-DENV activity. In this study, the screening assay was performed to compare the anti-viral activity against DENV of crude polysaccharide and ethanolic extracts derived from 4 species of cyanobacteria and algae in Vero cells. Polysaccharide extracts from Sargassum spp. exhibited the most effective in inhibiting DENV-2 infection at co-infection conditions where the virus was exposed to the extract at the time of infection. Treatment of the extract significantly reduced the ability of DENV to bind to the host cells to 47.87 ±â€¯3.88 % while treatment upon virus binding step had no anti-viral effect suggesting the underlaying mechanism of the extract on interfering virus binding step. Fucoidan, a key bioactive substance in Sargassum polysaccharide, showed to reduce DENV-2 infection to 26.59 ±â€¯5.01 %, 20.46 ±â€¯6.58 % in co-infection condition in Vero cells and A549 cell line, respectively. In accompanied with Sargassum polysaccharide, fucoidan disturbed the virus binding to the host cells. These findings warrant further development and exploration of the Sargassum-derived polysaccharide, fucoidan, as a promising candidate for combating DENV infections.

2.
Int J Mol Med ; 54(1)2024 Jul.
Article in English | MEDLINE | ID: mdl-38904202

ABSTRACT

Among women globally, breast cancer is the most prevalent cancer and the leading cause of cancer­related death. Interestingly, though genetic mutations contribute to the disease, <15% of women diagnosed with breast cancer have a family history of the disease, suggesting a prevalence of sporadic genetic mutations in breast cancer development. In the rapidly rising field of cancer genomics, neoantigen­based immunotherapy has come to the fore. The investigation of novel proteins arising from unique somatic mutations or neoantigens have opened a new pathway for both individualized and public cancer treatments. Because they are shared among individuals with similar genetic changes, public neoantigens provide an opportunity for 'off­the­shelf' anticancer therapies, potentially extending the benefits to a wider patient group. The present review aimed to highlight the role of shared or public neoantigens as therapeutic targets for patients with breast cancer, emphasizing common hotspot mutations of certain genes identified in breast cancer. The clinical utilization of public neoantigen­based therapies for breast cancer treatment were also discussed.


Subject(s)
Antigens, Neoplasm , Breast Neoplasms , Immunotherapy , Humans , Breast Neoplasms/therapy , Breast Neoplasms/immunology , Breast Neoplasms/genetics , Antigens, Neoplasm/immunology , Antigens, Neoplasm/genetics , Female , Immunotherapy/methods , Mutation
3.
Int Immunopharmacol ; 136: 112273, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38810311

ABSTRACT

Cholangiocarcinoma (CCA) presents a significant clinical challenge which is often identified in advanced stages, therby restricting the effectiveness of surgical interventions for most patients. The high incidence of cancer recurrence and resistance to chemotherapy further contribute to a bleak prognosis and low survival rates. To address this pressing need for effective therapeutic strategies, our study focuses on the development of an innovative cellular immunotherapy, specifically utilizing chimeric antigen receptor (CAR)-engineered natural killer (NK) cells designed to target the cMET receptor tyrosine kinase. In this investigation, we initiated the screening of a phage library displaying human single-chain variable fragment (ScFv) to identify novel ScFv molecules with specificity for cMET. Remarkably, ScFv11, ScFv72, and ScFv114 demonstrated exceptional binding affinity, confirmed by molecular docking analysis. These selected ScFvs, in addition to the well-established anti-cMET ScFvA, were integrated into a CAR cassette harboring CD28 transmembrane region-41BB-CD3ζ domains. The resulting anti-cMET CAR constructs were transduced into NK-92 cells, generating potent anti-cMET CAR-NK-92 cells. To assess the specificity and efficacy of these engineered cells, we employed KKU213A cells with high cMET expression and KKU055 cells with low cMET levels. Notably, co-culture of anti-cMET CAR-NK-92 cells with KKU213A cells resulted in significantly increased cell death, whereas no such effect was observed with KKU055 cells. In summary, our study identified cMET as a promising therapeutic target for CCA. The NK-92 cells, armed with the anti-cMET CAR molecule, have shown strong ability to kill cancer cells specifically, indicating their potential as a promising treatment for CCA in the future.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Killer Cells, Natural , Proto-Oncogene Proteins c-met , Receptors, Chimeric Antigen , Single-Chain Antibodies , Humans , Single-Chain Antibodies/genetics , Single-Chain Antibodies/therapeutic use , Single-Chain Antibodies/immunology , Cholangiocarcinoma/therapy , Cholangiocarcinoma/immunology , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Killer Cells, Natural/immunology , Cell Line, Tumor , Bile Duct Neoplasms/therapy , Bile Duct Neoplasms/immunology , Proto-Oncogene Proteins c-met/metabolism , Proto-Oncogene Proteins c-met/immunology , Immunotherapy, Adoptive/methods , Immunotherapy/methods , Precision Medicine
4.
Biomed Pharmacother ; 175: 116718, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744221

ABSTRACT

Advanced cholangiocarcinoma (CCA) presents a clinical challenge due to limited treatment options, necessitating exploration of innovative therapeutic approaches. Bispecific T cell engager (BTE)-armed T cell therapy shows promise in hematological and solid malignancies, offering potential advantages in safety over continuous BTE infusion. In this context, we developed a novel BTE, targeting CD3 on T cells and integrin αvß6, an antigen elevated in various epithelial malignancies, on cancer cells. The novel BTE was generated by fusing an integrin αvß6-binding peptide (A20) to an anti-CD3 (OKT3) single-chain variable fragment (scFv) through a G4S peptide linker (A20/αCD3 BTE). T cells were then armed with A20/αCD3 BTE (A20/αCD3-armed T cells) and assessed for antitumor activity. Our results highlight the specific binding of A20/αCD3 BTE to CD3 on T cells and integrin αvß6 on target cells, effectively redirecting T cells towards these targets. After co-culture, A20/αCD3-armed T cells exhibited significantly heightened cytotoxicity against integrin αvß6-expressing target cells compared to unarmed T cells in both KKU-213A cells and A375.ß6 cells. Moreover, in a five-day co-culture, A20/αCD3-armed T cells demonstrated superior cytotoxicity against KKU-213A spheroids compared to unarmed T cells. Importantly, A20/αCD3-armed T cells exhibited an increased proportion of the effector memory T cell (Tem) subset, upregulation of T cell activation markers, enhanced T cell proliferation, and increased cytolytic molecule/cytokine production, when compared to unarmed T cells in an integrin αvß6-dependent manner. These findings support the potential of A20/αCD3-armed T cells as a novel therapeutic approach for integrin αvß6-expressing cancers.


Subject(s)
Antigens, Neoplasm , Bile Duct Neoplasms , Cholangiocarcinoma , Integrins , T-Lymphocytes , Humans , Cholangiocarcinoma/immunology , Cholangiocarcinoma/therapy , Cholangiocarcinoma/pathology , Antigens, Neoplasm/immunology , T-Lymphocytes/immunology , Integrins/metabolism , Cell Line, Tumor , Bile Duct Neoplasms/immunology , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/therapy , CD3 Complex/immunology , Single-Chain Antibodies/pharmacology , Coculture Techniques , Antibodies, Bispecific/pharmacology
5.
Sci Rep ; 14(1): 9322, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38654034

ABSTRACT

Dengue virus (DENV) infection can lead to severe outcomes through a virus-induced cytokine storm, resulting in vascular leakage and inflammation. An effective treatment strategy should target both virus replication and cytokine storm. This study identified Kaempferia galanga L. (KG) extract as exhibiting anti-DENV activity. The major bioactive compound, ethyl-p-methoxycinnamate (EPMC), significantly reduced DENV-2 infection, virion production, and viral protein synthesis in HepG2 and A549 cells, with half-maximal effective concentration (EC50) values of 22.58 µM and 6.17 µM, and impressive selectivity indexes (SIs) of 32.40 and 173.44, respectively. EPMC demonstrated efficacy against all four DENV serotypes, targeting the replication phase of the virus life cycle. Importantly, EPMC reduced DENV-2-induced cytokines (IL-6 and TNF-α) and chemokines (RANTES and IP-10), as confirmed by immunofluorescence and immunoblot analyses, indicating inhibition of NF-κB activation. EPMC's role in preventing excessive inflammatory responses suggests it as a potential candidate for dengue treatment. Absorption, distribution, metabolism, excretion, and toxicity (ADMET) and drug-likeness for EPMC were predicted using SwissADME and ProTox II servers, showing good drug-like properties without toxicity. These findings highlight KG extract and EPMC as promising candidates for future anti-dengue therapeutics, offering a dual-action approach by inhibiting virus replication and mitigating inflammatory reactions.


Subject(s)
Antiviral Agents , Cinnamates , Dengue Virus , Dengue , Inflammation , NF-kappa B , Virus Replication , Humans , A549 Cells , Antiviral Agents/pharmacology , Cinnamates/pharmacology , Cytokines/metabolism , Dengue/drug therapy , Dengue/virology , Dengue Virus/drug effects , Hep G2 Cells , Inflammation/drug therapy , NF-kappa B/antagonists & inhibitors , NF-kappa B/drug effects , NF-kappa B/metabolism , Signal Transduction/drug effects , Virus Replication/drug effects
6.
Clin Exp Med ; 24(1): 90, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683232

ABSTRACT

Multiple myeloma (MM) is an incurable hematologic malignancy characterized by the rapid proliferation of malignant plasma cells within the bone marrow. Standard therapies often fail due to patient resistance. The US FDA has approved second-generation chimeric antigen receptor (CAR) T cells targeting B-cell maturation antigen (anti-BCMA-CAR2 T cells) for MM treatment. However, achieving enduring clinical responses remains a challenge in CAR T cell therapy. This study developed third-generation T cells with an anti-BCMA CAR (anti-BCMA-CAR3). The CAR incorporated a fully human scFv specific to BCMA, linked to the CD8 hinge region. The design included the CD28 transmembrane domain, two co-stimulatory domains (CD28 and 4-1BB), and the CD3ζ signaling domain (28BBζ). Lentiviral technology generated these modified T cells, which were compared against anti-BCMA-CAR2 T cells for efficacy against cancer. Anti-BCMA-CAR3 T cells exhibited significantly higher cytotoxic activity against BCMA-expressing cells (KMS-12-PE and NCI-H929) compared to anti-BCMA-CAR2 T cells. At an effector-to-target ratio of 10:1, anti-BCMA-CAR3 T cells induced lysis in 75.5 ± 3.8% of NCI-H929 cells, whereas anti-BCMA-CAR2 T cells achieved 56.7 ± 3.4% (p = 0.0023). Notably, after twelve days of cultivation, anti-BCMA-CAR3 T cells nearly eradicated BCMA-positive cells (4.1 ± 2.1%), while anti-BCMA-CAR2 T cells allowed 36.8 ± 20.1% to survive. This study highlights the superior efficacy of anti-BCMA-CAR3 T cells against both low and high BCMA-expressing MM cells, surpassing anti-BCMA-CAR2 T cells. These findings suggest potential for advancing anti-BCMA-CAR3 T cells in chimeric antigen receptor T (CAR-T) therapy for relapsed/refractory MM.


Subject(s)
B-Cell Maturation Antigen , Immunotherapy, Adoptive , Multiple Myeloma , Receptors, Chimeric Antigen , T-Lymphocytes , Multiple Myeloma/therapy , Multiple Myeloma/immunology , B-Cell Maturation Antigen/immunology , Humans , Receptors, Chimeric Antigen/immunology , Immunotherapy, Adoptive/methods , Cell Line, Tumor , T-Lymphocytes/immunology , Single-Chain Antibodies/immunology , Single-Chain Antibodies/genetics , Animals
7.
Heliyon ; 10(5): e27047, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38439836

ABSTRACT

Aim: This study aims to investigate the effects of the TCF7L2 rs7903146 and PAX4 rs2233580 (R192H) variants associated with T2D on the therapeutic efficacies of various HAs in patients with T2D after follow-up for 3 years. Methods: A total of 526 patients who were followed up at the Diabetic Clinic of Siriraj Hospital during 2016-2019 were enrolled. The variants TCF7L2 rs7903146 and PAX4 rs2233580 (R192H) were genotyped using the RNase H2 enzyme-based amplification (rhAmp) technique and the associations between genotypes and glycemic control after treatments with different combinations HA were evaluated using Generalized Estimating Equations (GEE) analysis. Results: Patients who carried TCF7L2 rs7903146C/T + T/T genotypes when they were treated with biguanide alone had significantly lower fasting plasma glucose (FPG) than those of the patients who carried the C/C genotype (p = 0.01). Patients who carried the PAX4 rs2233580 G/G genotype when they were treated with sulfonylurea alone had significantly lower FPG than those of the patients who carried G/A + A/A genotypes (p = 0.04). Conclusion: Genotypes of TCF7L2 rs7903146 and PAX4 rs2233580 (R192H) variants associated with T2D influence the therapeutic responses to biguanide and sulfonylurea. Different genotypes of these two variants might distinctively affect the therapeutic effects of HAs. This finding provides evidence of pharmacogenetics in the treatment of diabetes.

8.
Int Immunopharmacol ; 129: 111631, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38359664

ABSTRACT

The treatment of breast cancer (BC) remains a formidable challenge due to the emergence of drug resistance, necessitating the exploration of innovative strategies. Chimeric antigen receptor (CAR)-T cell therapy, a groundbreaking approach in hematologic malignancies, is actively under investigation for its potential application in solid tumors, including BC. Trophoblast cell surface antigen 2 (Trop2) has emerged as a promising immunotherapeutic target in various cancers and is notably overexpressed in BC. To enhance therapeutic efficacy in BC, a fourth-generation CAR (CAR4) construct was developed. This CAR4 design incorporates an anti-Trop2 single-chain variable fragment (scFv) fused with three costimulatory domains -CD28/4-1BB/CD27, and CD3ζ. Comparative analysis with the conventional second-generation CAR (CAR2; 28ζ) revealed that anti-Trop2 CAR4 T cells exhibited heightened cytotoxicity and interferon-gamma (IFN-γ) production against Trop2-expressing MCF-7 cells. Notably, anti-Trop2 CAR4-T cells demonstrated superior long-term cytotoxic functionality and proliferative capacity. Crucially, anti-Trop2 CAR4-T cells displayed specific cytotoxicity against Trop2-positive BC cells (MDA-MB-231, HCC70, and MCF-7) in both two-dimensional (2D) and three-dimensional (3D) culture systems. Following antigen-specific killing, these cells markedly secreted interleukin-2 (IL-2), tumor necrosis factor-alpha (TNF-α), IFN-γ, and Granzyme B compared to non-transduced T cells. This study highlights the therapeutic potential of anti-Trop2 CAR4-T cells in adoptive T cell therapy for BC, offering significant promise for the advancement of BC treatment strategies.


Subject(s)
Breast Neoplasms , Receptors, Antigen, T-Cell , Humans , Female , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes , Immunotherapy, Adoptive/methods , Interferon-gamma/metabolism , Cell Line, Tumor
9.
Cancer Immunol Immunother ; 73(3): 43, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38349410

ABSTRACT

Breast cancer stands as a formidable global health challenge for women. While neoantigens exhibit efficacy in activating T cells specific to cancer and instigating anti-tumor immune responses, the accuracy of neoantigen prediction remains suboptimal. In this study, we identified neoantigens from the patient-derived breast cancer cells, PC-B-142CA and PC-B-148CA cells, utilizing whole-genome and RNA sequencing. The pVAC-Seq pipeline was employed, with minor modification incorporating criteria (1) binding affinity of mutant (MT) peptide with HLA (IC50 MT) ≤ 500 nm in 3 of 5 algorithms and (2) IC50 wild type (WT)/MT > 1. Sequencing results unveiled 2513 and 3490 somatic mutations, and 646 and 652 non-synonymous mutations in PC-B-142CA and PC-B-148CA, respectively. We selected the top 3 neoantigens to perform molecular dynamic simulation and synthesized 9-12 amino acid neoantigen peptides, which were then pulsed onto healthy donor peripheral blood mononuclear cells (PBMCs). Results demonstrated that T cells activated by ADGRL1E274K, PARP1E619K, and SEC14L2R43Q peptides identified from PC-B-142CA exhibited significantly increased production of interferon-gamma (IFN-γ), while PARP1E619K and SEC14L2R43Q peptides induced the expression of CD107a on T cells. The % tumor cell lysis was notably enhanced by T cells activated with MT peptides across all three healthy donors. Moreover, ALKBH6V83M and GAAI823T peptides from PC-B-148CA remarkably stimulated IFN-γ- and CD107a-positive T cells, displaying high cell-killing activity against target cancer cells. In summary, our findings underscore the successful identification of neoantigens with anti-tumor T cell functions and highlight the potential of personalized neoantigens as a promising avenue for breast cancer treatment.


Subject(s)
Breast Neoplasms , Female , Humans , Leukocytes, Mononuclear , T-Lymphocytes , Algorithms , Antibodies
11.
Biomed Pharmacother ; 168: 115827, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37939617

ABSTRACT

Precision immunotherapy, driven by genomic and bioinformatic advancements, has emerged as a promising and viable approach to combat cancer. Targeting neoantigens offers the advantage of specific immune responses with minimal off-tumor toxicity. In this study, we investigated the potential of adoptive T cells activated by HLA-restricted neoantigen peptides from driver gene mutations for treating cholangiocarcinoma (CCA), a highly aggressive cancer with poor prognosis and high mortality rates. Through whole exome sequencing of CCA cell lines, KKU-213A and KKU-100, we identified mutations in common driver genes and predicted corresponding HLA-restricted peptides. Peptides from KRAS, RNF43, and TP53 mutations exhibited strong binding affinity to HLA-A11, as validated through molecular docking and T2-cell binding assays. Dendritic cells (DCs) from healthy donors expressing HLA-A* 11:01, pulsed with individual or pooled peptides, showed comparable levels of costimulatory molecules (CD11c, CD40, CD86, and HLA-DR) to conventional DCs but higher expression of maturation markers, CD80 and CD86. Autologous HLA-A* 11:01-restricted T cells, activated by peptide-pulsed DCs, effectively lysed KKU-213A (HLA-A*11:01) cells, outperforming conventional tumor lysate-pulsed DCs. This effect was specific to HLA-A* 11:01-restricted T cells and not observed in KKU-100 (HLA-A*33:03) cells. Moreover, HLA-A* 11:01-restricted T cells exhibited elevated levels of IFN-gamma, granulysin, and granzyme B, indicating their potent anti-tumor capabilities. These findings underscore the specificity and efficiency of HLA-A* 11:01-restricted T cells targeting KRAS, RNF43, TP53 mutated CCA cells, and offer valuable insights for developing immunotherapeutic strategies and therapeutic peptide-vaccines for CCA treatment.


Subject(s)
Cholangiocarcinoma , T-Lymphocytes , Humans , Molecular Docking Simulation , Proto-Oncogene Proteins p21(ras)/metabolism , Antigens, Neoplasm/genetics , Peptides/metabolism , HLA-A Antigens/metabolism , Cholangiocarcinoma/genetics , Cholangiocarcinoma/therapy , Immunotherapy , Mutation/genetics , Immunotherapy, Adoptive , T-Lymphocytes, Cytotoxic
12.
Int Immunopharmacol ; 124(Pt B): 111012, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37804657

ABSTRACT

T cell-based immunotherapy has transformed cancer treatment. Nonetheless, T cell antitumor activity can be inhibited by an immune checkpoint molecule expressed on cancer cells, program death ligand 1 (PD-L1), which interacts with the PD-1 on T cells. We generated αPD-L1 × αCD3 bispecific T-cell engager-armed T cells (BATs) to prevent PD-L1/PD-1 interaction and hence to redirect T cells to kill cancer cells. αPD-L1 × αCD3 bispecific T-cell engagers (BTEs) were produced from Chinese hamster ovary (CHO) cells to arm human primary T cells. Flow cytometry was used to investigate BTE binding to BATs. The cytotoxicity of BATs against PD-L1-expressing breast cancer (BC) cell lines was assessed in 2-dimensional (2D) and 3-dimensional (3D) culture models. The binding stability of BTE on BATs and their efficacy after cryopreservation were also examined. The CHO cell BTE expression yield was 3.34 mg/ml. The binding ability on T cells reached 91.02 ± 4.2 %. BATs specifically lysed PD-L1-expressing BC cells, with 56.4 ± 15.3 % HCC70 cells and 70.67 ± 15.6 % MDA-MB-231 cells lysed at a 10:1 effector-to-target ratio. BATs showed slight, nonsignificant lysis of PD-L1-negative BC cells, MCF-7, and T47D. Moreover, BATs significantly disrupted MDA-MB-231 3D spheroids expressing PD-L1 after 48 and 72 h of coculture. Cryopreserved BATs maintained BTE binding stability, cell viability, and anticancer activity, comparable to fresh BATs. αPD-L1 × αCD3 BATs induced the cytolysis of PD-L1-expressing BC cells in 2D and 3D coculture assays. BATs can be prepared and preserved, facilitating their use and transportation. This study demonstrates the potential of αPD-L1 × αCD3 BATs in treating cancers with positive PD-L1 expression.


Subject(s)
Antibodies, Bispecific , Breast Neoplasms , Animals , Cricetinae , Humans , Female , T-Lymphocytes , B7-H1 Antigen/metabolism , Programmed Cell Death 1 Receptor , CHO Cells , Arm , Breast Neoplasms/therapy , Breast Neoplasms/metabolism , Cricetulus , Immunosuppression Therapy , Antibodies, Bispecific/therapeutic use , Antibodies, Bispecific/metabolism , Cell Line, Tumor
13.
Biomed Pharmacother ; 168: 115691, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37844355

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapy targeting B cell maturation antigen (BCMA) has been approved for treating multiple myeloma (MM). Some clinical studies reported suboptimal outcomes, including reduced cytotoxicity of CAR-T cells and tumor evasion through increased expression of programmed death-ligand 1 (PD-L1). To enhance CAR-T cell efficiency and overcome PD-L1-mediated T cell suppression, we developed anti-BCMA-CAR5-T cells equipped with three costimulatory domains and the ability to secrete anti-PD-L1 single-chain variable fragment (scFv) blockade molecules. Anti-BCMA-CAR4-T cells contained a fully human anti-BCMA scFv and three intracellular domains (CD28, 4-1BB, and CD27) joined with CD3ζ. Anti-BCMA-CAR5-T cells were generated by fusing anti-BCMA-CAR4 with anti-PD-L1 scFv. Both anti-BCMA-CAR4-T and anti-BCMA-CAR5-T cells demonstrated comparable antitumor activity against parental MM cells. However, at an effector-to-target ratio of 1:2, only anti-BCMA-CAR5-T cells maintained cytolytic activity against PD-L1 high MM cells, unlike anti-BCMA-CAR4 T cells. Anti-BCMA-CAR5-T cells were specifically activated by BCMA-expressing target cells, resulting in increased CAR-T cell proliferation, release of cytolytic mediators, and pro-inflammatory cytokines. Anti-BCMA-CAR5-T cells demonstrated specific cytotoxicity against BCMA-expressing target cells, leading to decreased target cell numbers, increased CAR-T cell numbers, and preserved CAR expression during antigenic re-stimulation. Interestingly, only anti-BCMA-CAR5-T cells showed reduced PD-1 receptor levels, which correlated with decreased PD-L1 expression on target cells. We successfully generated anti-BCMA-CAR5-T cells capable of secreting anti-PD-L1 scFv. These cells exhibited superior antitumor efficiency, proliferative capacity, and alleviated T-cell exhaustion against MM cells. Further investigation into the antitumor efficacy of anti-BCMA-CAR5-T cells is warranted in ex vivo and clinical research settings.


Subject(s)
Multiple Myeloma , Receptors, Chimeric Antigen , Humans , Multiple Myeloma/therapy , Multiple Myeloma/pathology , B-Cell Maturation Antigen/metabolism , B7-H1 Antigen/metabolism , T-Cell Exhaustion , Cell Line, Tumor , Immunotherapy, Adoptive/methods , T-Lymphocytes
14.
Biomed Pharmacother ; 166: 115286, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37573655

ABSTRACT

Triple-negative breast cancer (TNBC) is a highly aggressive subtype currently lacking effective treatment options. Consequently, novel and effective drugs or compounds are urgently needed to treat TNBC. Therefore, this study aimed to evaluate the potential of 7R-acetylmelodorinol (7R-AMDL), a phytochemical compound isolated from Xylopia pierrei Hance, a plant found in Thailand, as a novel therapeutic agent for TNBC. MTT and clonogenic assays showed that 7R-AMDL significantly reduced the survival of breast cancer cell lines, with a markedly potent effect on MDA-MB-231 cells. Flow cytometry showed that treating MDA-MB-231 cells with 7R-AMDL at the concentration of dose 8 µM significantly increased early and late apoptosis after 24 and 48 h compared to the control group (p < 0.0001). The highest tested 7R-AMDL dose upregulated the death receptors and their ligands, with extrinsic and intrinsic apoptosis pathways significantly activated via the caspase cascade, compared to the untreated group (p < 0.05). In addition, immunoblots showed decreased BCL2-like 1 (BCL2L1/Bcl-xL) expression (p < 0.0001). Furthermore, wound healing and Transwell assays showed that at a non-cytotoxic dose (≤4 µM), 7R-AMDL significantly inhibited the MDA-MB-231 cell migration and invasion. This reduction in cell migration was associated with decreased matrix metallopeptidase 9 (MMP-9) expression (p < 0.01) and nuclear factor kappa B (NF-κB) activation (p < 0.05). Altogether, 7R-AMDL has anti-cancer effects against TNBC and the potential to be further developed and evaluated for treating this disease.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Cell Proliferation , Cell Line, Tumor , Signal Transduction , NF-kappa B/metabolism , Apoptosis
15.
J Cell Biochem ; 124(9): 1309-1323, 2023 09.
Article in English | MEDLINE | ID: mdl-37555250

ABSTRACT

Prolonged administration of dexamethasone, a potent anti-inflammatory drug, can lead to steroid-induced diabetes. Imatinib, a medication commonly prescribed for chronic myeloid leukemia (CML), has been shown to improve diabetes in CML patients. Our recent study demonstrated that dexamethasone induces pancreatic ß-cell apoptosis by upregulating the expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its receptor, death receptor 5 (DR5). We hypothesized that imatinib may protect against dexamethasone-induced pancreatic ß-cell apoptosis by reducing the expression of TRAIL and DR5, thereby favorably modulating downstream effectors in apoptotic pathways. We test this hypothesis by assessing the effects of imatinib on dexamethasone-induced apoptosis in rat insulinoma cell line cells. As anticipated, dexamethasone treatment led to increased TRAIL and DR5 expression, as well as an elevation in superoxide production. Conversely, expression of the TRAIL decoy receptor (DcR1) was decreased. Moreover, key effectors in the extrinsic and intrinsic apoptosis pathways, such as B-cell lymphoma 2 (BCL-2) associated X (BAX), nuclear factor kappa B (NF-κb), P73, caspase 8, and caspase 9, were upregulated, while the antiapoptotic protein BCL-2 was downregulated. Interestingly and importantly, imatinib at a concentration of 10 µM reversed the effect of dexamethasone on TRAIL, DR5, DcR1, superoxide production, BAX, BCL-2, NF-κB, P73, caspase 3, caspase 8, and caspase 9. Similar effects of imatinib on dexamethasone-induced TRAIL and DR5 expression were also observed in isolated mouse islets. Taken together, our findings suggest that imatinib protects against dexamethasone-induced pancreatic ß-cell apoptosis by reducing TRAIL and DR5 expression and modulating downstream effectors in the extrinsic and intrinsic apoptosis pathways.


Subject(s)
NF-kappa B , Superoxides , Animals , Mice , Rats , Apoptosis , bcl-2-Associated X Protein/metabolism , Caspase 8/metabolism , Caspase 9/metabolism , Cell Line, Tumor , Dexamethasone/pharmacology , Imatinib Mesylate/pharmacology , Ligands , NF-kappa B/metabolism , Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Superoxides/metabolism , TNF-Related Apoptosis-Inducing Ligand/metabolism , Tumor Necrosis Factor-alpha/metabolism
16.
Int J Mol Med ; 52(3)2023 Sep.
Article in English | MEDLINE | ID: mdl-37477132

ABSTRACT

The benefits of treating several types of cancers using immunotherapy have recently been established. The overexpression of nucleolin (NCL) in a number of types of cancer provides an attractive antigen target for the development of novel anticancer immunotherapeutic treatments. NCL is a multifunctional protein abundantly distributed in the nucleus, cytoplasm and cell membrane. It influences carcinogenesis, and the proliferation, survival and metastasis of cancer cells, leading to cancer progression. Additionally, the meta­analysis of total and cytoplasmic NCL overexpression indicates a poor prognosis of patients with breast cancer. The AS1411 aptamers currently appear to have therapeutic action in the phase II clinical trial. The authors' research group has recently explored the anticancer function of NCL through the activation of T cells by dendritic cell­based immunotherapy. The present review describes and discusses the mechanisms through which the multiple functions of NCL can participate in the progression of cancer. In addition, the studies that define the utility of NCL­dependent anticancer therapies are summarized, with specific focus being paid to cancer immunotherapeutic approaches.


Subject(s)
Breast Neoplasms , Phosphoproteins , Humans , Female , Phosphoproteins/metabolism , RNA-Binding Proteins/metabolism , Immunotherapy , Nucleolin
17.
Breast Cancer Res ; 25(1): 86, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37480115

ABSTRACT

BACKGROUND: Carcinoma-associated fibroblasts (CAFs) play a critical role in cancer progression and immune cell modulation. In this study, it was aimed to evaluate the roles of CAFs-derived IL-6 in doxorubicin (Dox) resistance and PD-L1-mediated chimeric antigenic receptor (CAR)-T cell resistance in breast cancer (BCA). METHODS: CAF conditioned-media (CM) were collected, and the IL-6 level was measured by ELISA. CAF-CM were treated in MDA-MB-231 and HCC70 TNBC cell lines and siIL-6 receptor (IL-6R) knocked down (KD) cells to determine the effect of CAF-derived IL-6 on Dox resistance by flow cytometry and on increased PD-L1 through STAT3, AKT and ERK1/2 pathways by Western blot analysis. After pre-treating with CM, the folate receptor alpha (FRα)-CAR T cell cytotoxicity was evaluated in 2D and 3D spheroid culture assays. RESULTS: The results showed a significant level of IL-6 in CAF-CM compared to that of normal fibroblasts (NFs). The CM with high IL-6 level significantly induced Dox resistance; and PD-L1 expression through STAT3 and AKT pathways in MDA-MB-231 and HCC70 cells. These induction effects were attenuated in siIL-6R KD cells. Moreover, the TNBC cell lines that were CM-treated with STAT3 and an AKT inhibitor had a reduced effect of IL-6 on PD-L1 expression. BCA cells with high IL-6 containing-CM treatment had resistance to cancer cell killing by FRα CAR-T cells compared to untreated cells. CONCLUSION: These results highlight CAF-derived IL-6 in the resistance of chemotherapy and T cell therapy. Using inhibitors of IL6-STAT3/AKT-PD-L1 axis may provide a potential benefit of Dox and CAR-T cell therapies in BCA patients.


Subject(s)
Cancer-Associated Fibroblasts , Receptors, Chimeric Antigen , Triple Negative Breast Neoplasms , Humans , Interleukin-6/genetics , Proto-Oncogene Proteins c-akt , B7-H1 Antigen/genetics , Triple Negative Breast Neoplasms/genetics , T-Lymphocytes , STAT3 Transcription Factor/genetics
18.
J Mass Spectrom Adv Clin Lab ; 28: 122-132, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37128502

ABSTRACT

Introduction: The therapeutic strategy and management of chronic myeloid leukemia (CML) have rapidly improved with the discovery of effective tyrosine kinase inhibitors (TKIs) to target BCR::ABL1 oncoprotein. However, nearly 30% of patients develop TKI resistance due to acquired mutations on the tyrosine kinase domain (TKD) of BCR::ABL1. Methods: We customized a mass array panel initially intended to detect and monitor the mutational burden of hotspot BCR::ABL1 TKD mutations accumulated in our database, including key mutations recently recommended by European LeukemiaNet. Additionally, we extended the feasibility of using the assay panel for the molecular classification of myeloproliferative neoplasms (MPNs) by incorporating primer sets specific for analyzing JAK2 V617F, MPL 515 K/L, and CALR types 1 and 2. Results: We found that the developed mass array panel was superior for detecting and monitoring clinically significant BCR::ABL1 TKD mutations, especially in cases with low mutational burden and harboring compound/polyclonal mutations, compared with direct sequencing. Moreover, our customized mass array panel detected common genetic alterations in MPNs, and the findings were consistent with those of other comparable assays available in our laboratory. Conclusions: Our customized mass array panel was practicably used as a routine robust assay for screening and monitoring BCR::ABL1 TKD mutations in patients with CML undergoing TKI treatment and feasible for analyzing common genetic mutations in MPNs.

19.
Biomed Pharmacother ; 160: 114306, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36738497

ABSTRACT

Cancer is the leading cause of death worldwide. Drug resistance and relapse after current standard treatments frequently occur; thus, alternative and effective treatments are required. Algae and cyanobacteria are abundant organisms that serve as bioresources of nutrients/metabolites, which are attractive sources of numerous bioactive compounds for drug discovery. In the present study, we, therefore, investigated anti-cancer activities of crude polysaccharide and ethanolic extracts from Chlorella sp., Sargassum spp., and Spirulina sp. against cell lines of five top-leading cancers including lung cancer (A549), cervical cancer (Hela), breast cancer (MCF7), hepatocellular carcinoma (Huh7), and cholangiocarcinoma (CCA; KKU213A). Only ethanolic extracts of Chlorella sp. showed consistent inhibition of growth of all cancer cell types. CCA was the most sensitive to Chlorella sp. ethanolic extract with CC50 of 277.4, 400.5, and 313.4 µg/mL for KKU055, KKU100, and KKU213A cells, respectively. Flow cytometric analysis demonstrated that CCA cell death was triggered via apoptosis pathway in accompany with lowering procaspase-3, -8, and -9 and increasing caspase enzymatic activity in addition to reducing anti-apoptosis Bcl-2 protein. Interestingly, the treatment of the extract at 400 µg/mL greatly inhibited the AKT/mTOR survival signaling as evidenced by significant reduction of phosphorylated-AKT and phosphorylated-mTOR proteins. The presence of reported bioactive compounds, gallic acid, and lutein, were confirmed in Chlorella sp. extract by high-performance liquid chromatography. Gallic acid and lutein treatment caused a significant reduction of KKU055, KKU100, and KKU213A cell viability. This study demonstrated the anti-cancer effect of Chlorella sp. ethanolic extract to promote cancer cell death via inhibition of AKT/mTOR pathway.


Subject(s)
Bile Duct Neoplasms , Chlorella , Cholangiocarcinoma , Microalgae , Humans , Proto-Oncogene Proteins c-akt/metabolism , Chlorella/chemistry , Microalgae/metabolism , Lutein/pharmacology , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Cholangiocarcinoma/pathology , Apoptosis , Bile Ducts, Intrahepatic/metabolism , Bile Duct Neoplasms/pathology , Gallic Acid/pharmacology , Cell Proliferation , Cell Line, Tumor
20.
Stem Cell Res ; 67: 103043, 2023 03.
Article in English | MEDLINE | ID: mdl-36791635

ABSTRACT

Distal renal tubular acidosis (dRTA), a disease characterized by the failure of the distal nephron to secrete acid into the urine, can be caused by mutations in SLC4A1 gene encoding erythroid and kidney anion exchanger 1 (AE1). Here, an induced pluripotent stem cell (iPSC) line was generated from a patient with dRTA and hemolytic anemia carrying compound heterozygous SLC4A1 mutations containing c.1199_1225del (p.Ala400_Ala408del), resulting in Southeast Asian ovalocytosis (SAO), and c.1331C>A (p.Thr444Asn). Peripheral blood mononuclear cells (PBMCs) were reprogrammed using Sendai viral reprogramming. The established iPSC line, MUSIi019-A, exhibited pluripotent property and retained the same mutations observed in the patients.


Subject(s)
Acidosis, Renal Tubular , Induced Pluripotent Stem Cells , Humans , Anion Exchange Protein 1, Erythrocyte/genetics , Anion Exchange Protein 1, Erythrocyte/metabolism , Induced Pluripotent Stem Cells/metabolism , Acidosis, Renal Tubular/genetics , Leukocytes, Mononuclear/metabolism , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...