Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 1790, 2022 04 04.
Article in English | MEDLINE | ID: mdl-35379805

ABSTRACT

Despite the recent clinical success of T cell checkpoint inhibition targeting the CTLA-4 and PD-1 pathways, many patients either fail to achieve objective responses or they develop resistance to therapy. In some cases, poor responses to checkpoint blockade have been linked to suboptimal CD28 costimulation and the inability to generate and maintain a productive adaptive anti-tumor immune response. To address this, here we utilize directed evolution to engineer a CD80 IgV domain with increased PD-L1 affinity and fuse this to an immunoglobulin Fc domain, creating a therapeutic (ALPN-202, davoceticept) capable of providing CD28 costimulation in a PD-L1-dependent fashion while also antagonizing PD-1 - PD-L1 and CTLA-4-CD80/CD86 interactions. We demonstrate that by combining CD28 costimulation and dual checkpoint inhibition, ALPN-202 enhances T cell activation and anti-tumor efficacy in cell-based assays and mouse tumor models more potently than checkpoint blockade alone and thus has the potential to generate potent, clinically meaningful anti-tumor immunity in humans.


Subject(s)
CD28 Antigens , Neoplasms , Animals , B7-1 Antigen/metabolism , CD28 Antigens/metabolism , Humans , Lymphocyte Activation , Mice , Neoplasms/drug therapy , Neoplasms/genetics , T-Lymphocytes
2.
Arch Biochem Biophys ; 497(1-2): 21-7, 2010 May.
Article in English | MEDLINE | ID: mdl-20193655

ABSTRACT

The zinc finger transcription factor Wilms tumour protein (WT 1) is known for its essential involvement in the development of the genitourinary system as well as of other organs and tissues. WT 1 is capable of selectively binding either DNA or mRNA targets. A KTS insertion due to alternative splicing between the zinc fingers 3 and 4 and an unconventional zinc finger 1 are the unique features that distinguish WT 1 from classical DNA-binding C(2)H(2)-type zinc finger proteins. The DNA binding characteristics of WT 1 are well studied. Due to lack of information about its native RNA targets, no extensive research has been directed at how WT 1 binds RNA. Using surface plasmon resonance, this study attempts to understand the binding behaviour of WT 1 zinc fingers with its recently reported and first putative mRNA target, ACT 34, whose stem-loop structure is believed to be critical for the interactions with WT 1. We have analysed the interactions of five WT 1 zinc finger truncations with wild-type ACT 34 and four variants. Our results indicate that WT 1 zinc fingers bind ACT 34 in a specific manner, and that this occurs as interplay of all four zinc fingers. We also report that a sensitive kinetic balance, which is equilibrated by both zinc finger 1 and KTS, regulates the interaction with ACT 34. The stem-loop and the flanking nucleotides are important elements for specific recognition by WT 1 zinc fingers.


Subject(s)
Actinin/metabolism , RNA, Messenger/metabolism , Transcription Factors/metabolism , WT1 Proteins/metabolism , Kinetics , Protein Binding/genetics , Protein Structure, Tertiary/genetics , RNA/metabolism , Surface Plasmon Resonance , Transcription Factors/genetics , WT1 Proteins/genetics , Zinc Fingers/genetics
3.
Biophys Chem ; 145(2-3): 116-25, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19853363

ABSTRACT

Wilms Tumor suppressor protein (WT1) is a transcription factor that is involved in a variety of developmental functions during organ development. It is also implicated in the pathology of several different cancer forms. The protein contains four C(2)H(2)-type zinc fingers and it specifically binds GC-rich sequences in the promoter regions of its target genes, which are either up or down regulated. Two properties make WT1 a more unusual transcription factor - an unconventional amino acid composition for zinc finger 1, and the insertion of a tri-peptide KTS in some of the splice isoforms of WT1. Using six WT1 constructs in which zinc fingers are systematically deleted, a dual study based on a bacterial 1-hybrid system and surface plasmon resonance measurements is performed. The experiments show that the effect of zinc finger 1 is not significant in terms of overall DNA-binding kinetics, however it influences both the specificity of target recognition and stability of interaction in presence of KTS. The KTS insertion, however, only mildly retards binding affinity, mainly by affecting the on-rate. We suggest that the insertion disturbs zinc finger 4 from its binding frame, thus weakening the rate of target recognition. Finally, for the construct in which both zinc fingers 1 and 4 were deleted, the two middle fingers 2-3 still could function as a 'minimal DNA-recognition domain' for WT1, however the formation of a stable protein-DNA complex is impaired since the overall affinity was dramatically reduced mainly since the off-rate was severely affected.


Subject(s)
DNA/metabolism , WT1 Proteins/metabolism , Amino Acid Sequence , Base Sequence , Binding Sites , Cloning, Molecular , Gene Deletion , Kinetics , Molecular Sequence Data , Protein Binding , Protein Structure, Tertiary , Surface Plasmon Resonance , WT1 Proteins/chemistry , WT1 Proteins/genetics , Zinc Fingers
4.
Clin Chem Lab Med ; 47(9): 1147-58, 2009.
Article in English | MEDLINE | ID: mdl-19728857

ABSTRACT

BACKGROUND: Antibodies in adults living in malaria endemic areas that target specific parasite antigens are implicated in protective immunity to infection and disease. This study aimed to identify, isolate and characterise targets of protective immunity in malaria. A Plasmodium falciparum antigen termed UB05 (Genbank Accession Number DQ235690: PlasmoDB PF10_ 0372) that had been isolated by immunoscreening with semi-immune sera was studied. METHODS: Polymerase chain reaction, sequencing and bioinformatics were used to analyse the UB05 gene. A specific mouse anti-UB05 antibody was used in parasite reinvasion growth/inhibition assays and in immunoflourescence to localise the antigen. In a cross-sectional study, enzyme linked immunosorbent assay was used to study immunoglobulin G (IgG) responses to the antigen. RESULTS: The gene revealed significant homologies with gene sequences from Plasmodia and other apicomplexan parasites and had two alleles in the wild P. falciparum isolates. The antigen is expressed by schizonts and segmented merozoites. Mouse antibodies against it marginally inhibit in vitro invasion of erythrocytes by P. falciparum. The IgG responses to UB05 were found to be significantly lower (p<0.05) in the sera of children (2-5 years) compared with adults (>18 years), with or without parasitaemia. However, parasitaemia correlated inversely (r=0.7- 0.75) with serum anti-UB05 IgG concentrations. Furthermore, anti-UB05 IgG concentrations were lower in the sera of febrile patients (body temperature >37.5 degrees C) than their non-febrile counterparts regardless of parasitaemia status. CONCLUSIONS: These results are compatible with a role for UB05 in the development of immunity and as a marker of protective immunity to malaria.


Subject(s)
Antigens, Protozoan/immunology , Plasmodium falciparum/immunology , Adult , Animals , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Antigens, Protozoan/metabolism , Base Sequence , Cameroon , Cross-Sectional Studies , Disease Outbreaks , Enzyme-Linked Immunosorbent Assay , Glycine , Humans , Malaria/epidemiology , Mice , Molecular Sequence Data , Phylogeny , Plasmodium falciparum/classification , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid
5.
J Mol Biol ; 378(5): 1074-83, 2008 May 16.
Article in English | MEDLINE | ID: mdl-18423489

ABSTRACT

The specific insertion of a divalent metal ion into tetrapyrrole macrocycles is catalyzed by a group of enzymes called chelatases. Distortion of the tetrapyrrole has been proposed to be an important component of the mechanism of metallation. We present the structures of two different inhibitor complexes: (1) N-methylmesoporphyrin (N-MeMP) with the His183Ala variant of Bacillus subtilis ferrochelatase; (2) the wild-type form of the same enzyme with deuteroporphyrin IX 2,4-disulfonic acid dihydrochloride (dSDP). Analysis of the structures showed that only one N-MeMP isomer out of the eight possible was bound to the protein and it was different from the isomer that was earlier found to bind to the wild-type enzyme. A comparison of the distortion of this porphyrin with other porphyrin complexes of ferrochelatase and a catalytic antibody with ferrochelatase activity using normal-coordinate structural decomposition reveals that certain types of distortion are predominant in all these complexes. On the other hand, dSDP, which binds closer to the protein surface compared to N-MeMP, does not undergo any distortion upon binding to the protein, underscoring that the position of the porphyrin within the active site pocket is crucial for generating the distortion required for metal insertion. In addition, in contrast to the wild-type enzyme, Cu(2+)-soaking of the His183Ala variant complex did not show any traces of porphyrin metallation. Collectively, these results provide new insights into the role of the active site residues of ferrochelatase in controlling stereospecificity, distortion and metallation.


Subject(s)
Ferrochelatase , Porphyrins , Protein Structure, Tertiary , Animals , Bacillus subtilis/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Binding Sites , Crystallography, X-Ray , Ferrochelatase/chemistry , Ferrochelatase/metabolism , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Humans , Mice , Models, Molecular , Molecular Sequence Data , Molecular Structure , Porphyrins/chemistry , Porphyrins/metabolism , Protein Binding , Substrate Specificity , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...