Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Anat Rec (Hoboken) ; 307(5): 1930-1942, 2024 May.
Article in English | MEDLINE | ID: mdl-37746926

ABSTRACT

The vertebral anatomy of snakes has attracted the attention of researchers for decades and numerous studies have been made for extinct and extant species. The present study investigated the morphological variations in vertebral structure among different vertebral regions in the dice snake Natrix tessellata, and provides a detailed anatomical and microstructural description of the vertebral column. Vertebrae were analyzed and compared using x-ray imaging, scanning electron microscopy, micro-computed tomography, and histological techniques. The vertebral column of N. tessellata is divided into three regions: precloacal, cloacal, and caudal. Unlike in many other tetrapods and snakes, the atlas of N. tessellata does not form a complete ring. It has a flat and roughly trilobate shape with a prominent middle lobe. The axis has two hypapophyses. The anterior precloacal region of the vertebral column has longer and more paddle-shaped hypapophyses, distinguishing it from the posterior and mid-trunk vertebrae. The anterior cloacal vertebrae have a short hypapophysis rather than a hemal keel, and the lymphapophysis extends outward, curving slightly. The cotyle and condyle of the caudal vertebrae exhibited a closer resemblance to a rounded shape, while the pleurapophysis extended ventrolaterally and curved ventrally near its distal end. Paired hemapophyses were present at the posterior-most point of the centrum instead of a hypapophysis. In light of previous fossil findings, our anatomical comparison of the vertebral and transverse processes indicates that the extant Natrix has a more flexible and less rigid spine than its ancestors. Overall, the vertebral differences among snake anatomical regions or taxa are a testament to the remarkable diversity and adaptability of these fascinating reptiles.


Subject(s)
Colubridae , Animals , Turkey , X-Ray Microtomography , Spine/diagnostic imaging , Histological Techniques
2.
J Dev Biol ; 11(1)2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36810457

ABSTRACT

The reptile skin is a barrier against water loss and pathogens and an armor for mechanical damages. The integument of reptiles consists of two main layers: the epidermis and the dermis. The epidermis, the hard cover of the body which has an armor-like role, varies among extant reptiles in terms of structural aspects such as thickness, hardness or the kinds of appendages it constitutes. The reptile epithelial cells of the epidermis (keratinocytes) are composed of two main proteins: intermediate filament keratins (IFKs) and corneous beta proteins (CBPs). The outer horny layer of the epidermis, stratum corneum, is constituted of keratinocytes by means of terminal differentiation or cornification which is a result of the protein interactions where CBPs associate with and coat the initial scaffold of IFKs. Reptiles were able to colonize the terrestrial environment due to the changes in these epidermal structures, which led to various cornified epidermal appendages such as scales and scutes, a beak, claws or setae. Developmental and structural aspects of the epidermal CBPs as well as their shared chromosomal locus (EDC) indicate an ancestral origin that gave rise to the finest armor of reptilians.

3.
J Dev Biol ; 11(1)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36810458

ABSTRACT

Amphibian skin is a particularly complex organ that is primarily responsible for respiration, osmoregulation, thermoregulation, defense, water absorption, and communication. The skin, as well as many other organs in the amphibian body, has undergone the most extensive rearrangement in the adaptation from water to land. Structural and physiological features of skin in amphibians are presented within this review. We aim to procure extensive and updated information on the evolutionary history of amphibians and their transition from water to land-that is, the changes seen in their skin from the larval stages to adulthood from the points of morphology, physiology, and immunology.

4.
Naturwissenschaften ; 109(2): 22, 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35377081

ABSTRACT

Melanism is a polymorphic phenotype caused by the number and density of melanocyte cells producing melanin pigment in the skin and widely observed in snakes. The frequency of this coloration in populations is associated with its opposing fitness consequences and can be closely related to species-specific characteristics such as sex, reproduction, and nutrition, as well as environmental factors such as climate and geography. Although melanism is frequently seen in snakes, the skin structure of melanistic individuals has not been studied in detail. Also, the impact of the black phenotype on habitat use has not yet been clarified in this species. Here, we show a comparison of typical and melanistic morphs of the grass snake Natrix natrix population of Anatolia for the first time in terms of skin structure, habitat, and sex. We found that melanistic individuals, in which partial melanism is more abundant than total melanism, comprise 13% of the population. Melanocyte area of the skin is 1.4 times greater in melanistic compared to the typical individuals. The epidermis is thicker in typical morphs by 7.7%. Hinge regions between adjacent scales do not bare melanocytes in both morphs. As for habitat utilization, we revealed that melanistic individuals of the Isikli population tend to occur closer to water bodies than typical ones. Our data provide a new perspective on poorly known aspects of color polymorphism and habitat use of widely distributed, semi-aquatic Natrix natrix.


Subject(s)
Colubridae , Melanosis , Animals , Ecosystem , Pigmentation , Skin
5.
Anat Rec (Hoboken) ; 305(12): 3543-3608, 2022 12.
Article in English | MEDLINE | ID: mdl-35225424

ABSTRACT

The skin is a barrier between the internal and external environment of an organism. Depending on the species, it participates in multiple functions. The skin is the organ that holds the body together, covers and protects it, and provides communication with its environment. It is also the body's primary line of defense, especially for anamniotes. All vertebrates have multilayered skin composed of three main layers: the epidermis, the dermis, and the hypodermis. The vital mission of the integument in aquatic vertebrates is mucus secretion. Cornification began in apmhibians, improved in reptilians, and endured in avian and mammalian epidermis. The feather, the most ostentatious and functional structure of avian skin, evolved in the Mesozoic period. After the extinction of the dinosaurs, birds continued to diversify, followed by the enlargement, expansion, and diversification of mammals, which brings us to the most complicated skin organization of mammals with differing glands, cells, physiological pathways, and the evolution of hair. Throughout these radical changes, some features were preserved among classes such as basic dermal structure, pigment cell types, basic coloration genetics, and similar sensory features, which enable us to track the evolutionary path. The structural and physiological properties of the skin in all classes of vertebrates are presented. The purpose of this review is to go all the way back to the agnathans and follow the path step by step up to mammals to provide a comparative large and updated survey about vertebrate skin in terms of morphology, physiology, genetics, ecology, and immunology.


Subject(s)
Biological Evolution , Dinosaurs , Animals , Dinosaurs/physiology , Feathers/anatomy & histology , Integumentary System/anatomy & histology , Integumentary System/physiology , Birds/anatomy & histology , Mammals/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...