Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Biochem Biophys ; 694: 108615, 2020 11 15.
Article in English | MEDLINE | ID: mdl-33011179

ABSTRACT

We previously demonstrated that the ~130-kDa CyaA-hemolysin domain (CyaA-Hly) from Bordetella pertussis co-expressed with CyaC-acyltransferase in Escherichia coli was acylated at Lys983 and thus activated its hemolytic activity. Here, attempts were made to provide greater insights into such toxin activation via fatty-acyl modification by CyaC-acyltransferase. Non-acylated CyaA-Hly (NA/CyaA-Hly) and CyaC were separately expressed in E. coli and subsequently purified by FPLC to near homogeneity. When effects of acyl-chain length were comparatively evaluated through CyaC-esterolysis using various p-nitrophenyl (pNP) derivatives, Michaelis-Menten steady-state kinetic parameters (KM and kcat) of CyaC-acyltransferase revealed a marked preference for myristoyl (C14:0) and palmitoyl (C16:0) substrates of which catalytic efficiencies (kcat/KM) were roughly the same (~1.5 × 103 s-1mM-1). However, pNP-palmitate (pNPP) gave the highest hemolytic activity of NA/CyaA-Hly after being acylated in vitro with a range of acyl-donor substrates. LC-MS/MS analysis confirmed such CyaC-mediated palmitoylation of CyaA-Hly occurring at Lys983, denoting no requirement of an acyl carrier protein (ACP). A homology-based CyaC structure inferred a role of a potential catalytic dyad of conserved Ser30 and His33 residues in substrate esterolysis. CyaC-ligand binding analysis via molecular docking corroborated high-affinity binding of palmitate with its carboxyl group oriented toward such a dyad. Ala-substitutions of each residue (S30A or H33A) caused a drastic decrease in kcat/KM of CyaC toward pNPP, and hence its catalytic malfunction through palmitoylation-dependent activation of NA/CyaA-Hly. Altogether, our present data evidently provide such preferential palmitoylation of CyaA-Hly by CyaC-acyltransferase through the enzyme Ser30-His33 nucleophile-activation dyad in esterolysis of palmitoyl-donor substrate, particularly devoid of a natural acyl-ACP donor.


Subject(s)
Acyltransferases/chemistry , Adenylate Cyclase Toxin/chemistry , Histidine/chemistry , Palmitates/chemistry , Serine/chemistry , Acyltransferases/genetics , Acyltransferases/metabolism , Adenylate Cyclase Toxin/metabolism , Amino Acid Sequence , Bordetella pertussis/enzymology , Catalysis , Kinetics , Lipoylation , Molecular Docking Simulation , Mutagenesis, Site-Directed , Mutation , Palmitates/metabolism , Protein Binding , Sequence Alignment , Substrate Specificity
2.
Biochem Biophys Res Commun ; 485(4): 720-724, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28238785

ABSTRACT

Proteolytic degradation of the ∼100-kDa isolated RTX (Repeat-in-ToXin) subdomain (CyaA-RTX) of the Bordetella pertussis CyaA-hemolysin (CyaA-Hly) was evidently detected upon solely-prolonged incubation. Here, a truncated CyaA-Hly fragment (CyaA-HP/BI) containing hydrophobic and acylation regions connected with the first RTX block (BI1015-1088) was constructed as a putative precursor for investigating its potential autocatalysis. The 70-kDa His-tagged CyaA-HP/BI fragment which was over-expressed in Escherichia coli as insoluble aggregate was entirely solubilized with 4 M urea. After re-naturation in a Ni2+-NTA affinity column, the purified-refolded CyaA-HP/BI fragment in HEPES buffer (pH 7.4) supplemented with 2 mM CaCl2 was completely degraded upon incubation at 37 °C for 3 h. Addition of 1,10-phenanthroline‒an inhibitor of Zn2+-dependent metalloproteases markedly reduced the extent of degradation for CyaA-HP/BI and CyaA-RTX, but the degradative effect was clearly enhanced by addition of 100 mM ZnCl2. Structural analysis of a plausible CyaA-HP/BI model revealed a potential Zn2+-binding His-Asp cluster located between the acylation region and RTX-BI1015-1088. Moreover, Arg997‒one of the identified cleavage sites of the CyaA-RTX fragment was located in close proximity to the Zn2+-binding catalytic site. Overall results demonstrated for the first time that the observed proteolysis of CyaA-HP/BI and CyaA-RTX fragments is conceivably due to their Zn2+-dependent autocatalytic activity.


Subject(s)
Adenylate Cyclase Toxin/metabolism , Bacterial Proteins/metabolism , Bordetella pertussis/metabolism , Hemolysin Proteins/metabolism , Zinc/metabolism , Adenylate Cyclase Toxin/chemistry , Adenylate Cyclase Toxin/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Binding Sites/genetics , Biocatalysis/drug effects , Blotting, Western , Bordetella pertussis/genetics , Escherichia coli/genetics , Hemolysin Proteins/chemistry , Hemolysin Proteins/genetics , Models, Molecular , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Phenanthrolines/pharmacology , Protein Domains , Protein Precursors/chemistry , Protein Precursors/genetics , Protein Precursors/metabolism , Proteolysis/drug effects , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Zinc/chemistry , Zinc/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...