Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Cancer Immunol Res ; 11(5): 629-645, 2023 05 03.
Article in English | MEDLINE | ID: mdl-36881002

ABSTRACT

The composition of the tumor immune microenvironment (TIME) is considered a key determinant of patients' response to immunotherapy. The mechanisms underlying TIME formation and development over time are poorly understood. Glioblastoma (GBM) is a lethal primary brain cancer for which there are no curative treatments. GBMs are immunologically heterogeneous and impervious to checkpoint blockade immunotherapies. Utilizing clinically relevant genetic mouse models of GBM, we identified distinct immune landscapes associated with expression of EGFR wild-type and mutant EGFRvIII cancer driver mutations. Over time, accumulation of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) was more pronounced in EGFRvIII-driven GBMs and was correlated with resistance to PD-1 and CTLA-4 combination checkpoint blockade immunotherapy. We determined that GBM-secreted CXCL1/2/3 and PMN-MDSC-expressed CXCR2 formed an axis regulating output of PMN-MDSCs from the bone marrow leading to systemic increase in these cells in the spleen and GBM tumor-draining lymph nodes. Pharmacologic targeting of this axis induced a systemic decrease in the numbers of PMN-MDSC, facilitated responses to PD-1 and CTLA-4 combination checkpoint blocking immunotherapy, and prolonged survival in mice bearing EGFRvIII-driven GBM. Our results uncover a relationship between cancer driver mutations, TIME composition, and sensitivity to checkpoint blockade in GBM and support the stratification of patients with GBM for checkpoint blockade therapy based on integrated genotypic and immunologic profiles.


Subject(s)
Brain Neoplasms , Glioblastoma , Myeloid-Derived Suppressor Cells , Animals , Mice , Glioblastoma/therapy , Glioblastoma/drug therapy , CTLA-4 Antigen/genetics , CTLA-4 Antigen/metabolism , Programmed Cell Death 1 Receptor , Cell Line, Tumor , Immunotherapy , Mutation , Tumor Microenvironment/genetics , Brain Neoplasms/genetics , Brain Neoplasms/therapy
2.
Nat Immunol ; 23(6): 971-984, 2022 06.
Article in English | MEDLINE | ID: mdl-35624211

ABSTRACT

Glioblastoma (GBM) is an incurable primary malignant brain cancer hallmarked with a substantial protumorigenic immune component. Knowledge of the GBM immune microenvironment during tumor evolution and standard of care treatments is limited. Using single-cell transcriptomics and flow cytometry, we unveiled large-scale comprehensive longitudinal changes in immune cell composition throughout tumor progression in an epidermal growth factor receptor-driven genetic mouse GBM model. We identified subsets of proinflammatory microglia in developing GBMs and anti-inflammatory macrophages and protumorigenic myeloid-derived suppressors cells in end-stage tumors, an evolution that parallels breakdown of the blood-brain barrier and extensive growth of epidermal growth factor receptor+ GBM cells. A similar relationship was found between microglia and macrophages in patient biopsies of low-grade glioma and GBM. Temozolomide decreased the accumulation of myeloid-derived suppressor cells, whereas concomitant temozolomide irradiation increased intratumoral GranzymeB+ CD8+T cells but also increased CD4+ regulatory T cells. These results provide a comprehensive and unbiased immune cellular landscape and its evolutionary changes during GBM progression.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Animals , Brain Neoplasms/metabolism , ErbB Receptors , Glioblastoma/metabolism , Humans , Mice , Sequence Analysis, RNA , Single-Cell Analysis , Temozolomide/therapeutic use , Tumor Microenvironment/genetics
3.
Oncogene ; 40(15): 2682-2696, 2021 04.
Article in English | MEDLINE | ID: mdl-33707748

ABSTRACT

Focal amplification of epidermal growth factor receptor (EGFR) and its ligand-independent, constitutively active EGFRvIII mutant form are prominent oncogenic drivers in glioblastoma (GBM). The EGFRvIII gene rearrangement is considered to be an initiating event in the etiology of GBM, however, the mechanistic details of how EGFRvIII drives cellular transformation and tumor maintenance remain unclear. Here, we report that EGFRvIII demonstrates a reliance on PDGFRA co-stimulatory signaling during the tumorigenic process in a genetically engineered autochthonous GBM model. This dependency exposes liabilities that were leveraged using kinase inhibitors treatments in EGFRvIII-expressing GBM patient-derived xenografts (PDXs), where simultaneous pharmacological inhibition of EGFRvIII and PDGFRA kinase activities is necessary for anti-tumor efficacy. Our work establishes that EGFRvIII-positive tumors have unexplored vulnerabilities to targeted agents concomitant to the EGFR kinase inhibitor repertoire.


Subject(s)
Brain Neoplasms/metabolism , ErbB Receptors/metabolism , Glioblastoma/metabolism , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Animals , Apoptosis/drug effects , Brain Neoplasms/drug therapy , ErbB Receptors/antagonists & inhibitors , Glioblastoma/drug therapy , Glioblastoma/pathology , HEK293 Cells , Heterografts , Humans , MAP Kinase Signaling System/drug effects , Mice , Mitogen-Activated Protein Kinase Kinases/metabolism , Morpholines/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Receptor, Platelet-Derived Growth Factor alpha/antagonists & inhibitors
4.
Clin Neuropathol ; 39(3): 126-134, 2020.
Article in English | MEDLINE | ID: mdl-31841105

ABSTRACT

The molecular alterations underlying progression of low-grade glial/glioneuronal tumors remain to be elucidated. We present a case of a 56-year-old male with an enhancing left temporal lobe tumor. Histology revealed a high-grade glioma adjacent to a low-grade glioneuronal component with abundant Rosenthal fibers, focal eosinophilic granular bodies, and CD34-positive neurons. The tumor was negative for IDH1 (R132H), BRAF-V600E, and the KIAA1549-BRAF fusion. Comparative genomic hybridization detected a large amplification (> 15 copies) of the Son of Sevenless 1 (SOS1) gene, a component of the MAPK pathway. Although activating mutations in the MAPK pathway occur frequently in gliomas and glioneuronal tumors, SOS1 gene amplification has not been reported previously. This case indicates another potential mechanism for MAPK activation in glial tumors.


Subject(s)
Astrocytoma/genetics , Glioma/pathology , Mutation/genetics , SOS1 Protein/genetics , Astrocytoma/diagnosis , Astrocytoma/pathology , Biomarkers, Tumor/genetics , Brain Neoplasms/diagnosis , Brain Neoplasms/pathology , Comparative Genomic Hybridization/methods , Glioma/genetics , Humans , Male , Middle Aged , Neoplasm Grading , Proto-Oncogene Proteins B-raf/genetics
5.
PLoS One ; 14(9): e0222588, 2019.
Article in English | MEDLINE | ID: mdl-31553754

ABSTRACT

The use of alternative promoters for the cell type-specific expression of a given mRNA/protein is a common cell strategy. NEMO is a scaffold protein required for canonical NF-κB signaling. Transcription of the NEMO gene is primarily controlled by two promoters: one (promoter B) drives NEMO transcription in most cell types and the second (promoter D) is largely responsible for NEMO transcription in liver cells. Herein, we have used a CRISPR/Cas9-based approach to disrupt a core sequence element of promoter B, and this genetic editing essentially eliminates expression of NEMO mRNA and protein in 293T human kidney cells. By cell subcloning, we have isolated targeted 293T cell lines that express no detectable NEMO protein, have defined genomic alterations at promoter B, and do not support activation of canonical NF-κB signaling in response to treatment with tumor necrosis factor. Nevertheless, non-canonical NF-κB signaling is intact in these NEMO-deficient cells. Expression of ectopic wild-type NEMO, but not certain human NEMO disease mutants, in the edited cells restores downstream NF-κB signaling in response to tumor necrosis factor. Targeting of the promoter B element does not substantially reduce NEMO expression (from promoter D) in the human SNU-423 liver cancer cell line. Thus, we have created a strategy for selectively eliminating cell type-specific expression from an alternative promoter and have generated 293T cell lines with a functional knockout of NEMO. The implications of these findings for further studies and for therapeutic approaches to target canonical NF-κB signaling are discussed.


Subject(s)
Gene Editing/methods , Gene Knockdown Techniques/methods , I-kappa B Kinase/genetics , Regulatory Elements, Transcriptional/genetics , CRISPR-Associated Protein 9 , CRISPR-Cas Systems , HEK293 Cells , Humans , NF-kappa B/metabolism , Signal Transduction
6.
Nat Commun ; 9(1): 3116, 2018 08 06.
Article in English | MEDLINE | ID: mdl-30082792

ABSTRACT

Glioblastoma multiforme (GBM) is an aggressive primary brain cancer that includes focal amplification of PDGFRα and for which there are no effective therapies. Herein, we report the development of a genetically engineered mouse model of GBM based on autocrine, chronic stimulation of overexpressed PDGFRα, and the analysis of GBM signaling pathways using proteomics. We discover the tubulin-binding protein Stathmin1 (STMN1) as a PDGFRα phospho-regulated target, and that this mis-regulation confers sensitivity to vinblastine (VB) cytotoxicity. Treatment of PDGFRα-positive mouse and a patient-derived xenograft (PDX) GBMs with VB in mice prolongs survival and is dependent on STMN1. Our work reveals a previously unconsidered link between PDGFRα activity and STMN1, and highlight an STMN1-dependent cytotoxic effect of VB in GBM.


Subject(s)
Breast Neoplasms/metabolism , Drug Resistance, Neoplasm , Glioblastoma/metabolism , Receptor, Platelet-Derived Growth Factor beta/metabolism , Stathmin/metabolism , Vinblastine/pharmacology , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Cell Cycle , Cell Survival , Cells, Cultured , Computational Biology , Disease Models, Animal , Female , Gene Expression Regulation, Neoplastic , Humans , Magnetic Resonance Imaging , Male , Mice , Neoplasm Transplantation , Phosphorylation , Proteomics , Signal Transduction
7.
J Cell Biochem ; 118(9): 2516-2527, 2017 09.
Article in English | MEDLINE | ID: mdl-28230277

ABSTRACT

Glioblastoma Multiforme (GBM) is a highly malignant primary brain cancer that is associated with abysmal prognosis. The median survival of GBM patients is ∼15 months and there have not been any significant advance in therapies in over a decade, leaving treatment options limited. There is clearly an unmet need for GBM treatment. Immunotherapies are treatments based on usurping the power of the host's immune system to recognize and eliminate cancer cells. They have recently proven to be a successful strategy for combating a variety of cancers. Of the various types of immunotherapies, checkpoint blockade approaches have thus far produced significant clinical responses in several cancers including melanoma, non small-cell lung cancer, renal cancer, and prostate cancer. This review focuses on the biological rationale for using checkpoint blockade immunotherapeutic approaches in primary brain cancer and an up-to-date summary of current and ongoing checkpoint inhibitors-based clinical trials for malignant glioma. In addition, we expand on new concepts for further improving checkpoint blockade treatments, with a particular focus on the advantages of using genetically engineered mouse models for studies of immunotherapies in GBM. J. Cell. Biochem. 118: 2516-2527, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
Brain Neoplasms , Glioblastoma , Immunotherapy/methods , Neoplasms, Experimental , Animals , Brain Neoplasms/genetics , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Brain Neoplasms/therapy , Glioblastoma/genetics , Glioblastoma/immunology , Glioblastoma/pathology , Glioblastoma/therapy , Humans , Mice , Neoplasms, Experimental/genetics , Neoplasms, Experimental/immunology , Neoplasms, Experimental/pathology , Neoplasms, Experimental/therapy
8.
Endocrinology ; 157(6): 2294-308, 2016 06.
Article in English | MEDLINE | ID: mdl-27070100

ABSTRACT

The possibility that chronic, multigenerational exposure to environmental estrogens selects for adaptive hormone-response phenotypes is a critical unanswered question. Embryos/larvae of killifish from an estrogenic-polluted environment (New Bedford Harbor, MA [NBH]) compared with those from a reference site overexpress estrogen receptor alpha (ERα) mRNA but are hyporesponsive to estradiol. Analysis of ERα mRNAs in the two populations revealed differences in splicing of the gene encoding ERα (esr1). Here we tested the transactivation functions of four differentially expressed ERα mRNAs and tracked their association with the hyporesponsive phenotype for three generations after transfer of NBH parents to a clean environment. Deletion variants ERαΔ6 and ERαΔ6-8 were specific to NBH killifish, had dominant negative functions in an in vitro reporter assay, and were heritable. Morpholino-mediated induction of ERαΔ6 mRNA in zebrafish embryos verified its role as a dominant negative ER on natural estrogen-responsive promoters. Alternate long (ERαL) and short (ERαS) 5'-variants were similar transcriptionally but differed in estrogen responsiveness (ERαS ≫ ERαL). ERαS accounted for high total ERα expression in first generation (F1) NBH embryos/larvae but this trait was abolished by transfer to clean water. By contrast, the hyporesponsive phenotype of F1 NBH embryos/larvae persisted after long-term laboratory holding but reverted to a normal or hyper-responsive phenotype after two or three generations, suggesting the acquisition of physiological or biochemical traits that compensate for ongoing expression of negative-acting ERαΔ6 and ERαΔ6-8 isoforms. We conclude that a heritable change in the pattern of alternative splicing of ERα pre-mRNA is part of a genetic adaptive response to estrogens in a polluted environment.


Subject(s)
Alternative Splicing/genetics , Estrogen Receptor alpha/genetics , Estrogens/toxicity , Animals , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/metabolism , Fundulidae , Polymerase Chain Reaction , RNA Splicing/genetics , Water Pollutants, Chemical/toxicity , Zebrafish
9.
Molecules ; 20(5): 7474-94, 2015 Apr 23.
Article in English | MEDLINE | ID: mdl-25915462

ABSTRACT

Increased activity of transcription factor NF-κB has been implicated in many B-cell lymphomas. We investigated effects of synthetic compound calafianin monomer (CM101) on biochemical and biological properties of NF-κB. In human 293 cells, CM101 selectively inhibited DNA binding by overexpressed NF-κB subunits REL (human c-Rel) and p65 as compared to NF-κB p50, and inhibition of REL and p65 DNA binding by CM101 required a conserved cysteine residue. CM101 also inhibited DNA binding by REL in human B-lymphoma cell lines, and the sensitivity of several B-lymphoma cell lines to CM101-induced proliferation arrest and apoptosis correlated with levels of cellular and nuclear REL. CM101 treatment induced both phosphorylation and decreased expression of anti-apoptotic protein Bcl-XL, a REL target gene product, in sensitive B-lymphoma cell lines. Ectopic expression of Bcl-XL protected SUDHL-2 B-lymphoma cells against CM101-induced apoptosis, and overexpression of a transforming mutant of REL decreased the sensitivity of BJAB B-lymphoma cells to CM101-induced apoptosis. Lipopolysaccharide-induced activation of NF-κB signaling upstream components occurred in RAW264.7 macrophages at CM101 concentrations that blocked NF-κB DNA binding. Direct inhibitors of REL may be useful for treating B-cell lymphomas in which REL is active, and may inhibit B-lymphoma cell growth at doses that do not affect some immune-related responses in normal cells.


Subject(s)
Apoptosis/drug effects , Cell Proliferation/drug effects , Lymphoma, B-Cell/drug therapy , Proto-Oncogene Proteins c-rel/antagonists & inhibitors , Tyrosine/analogs & derivatives , 3T3 Cells , Animals , Cell Line, Tumor , DNA-Binding Proteins/antagonists & inhibitors , Enzyme Activation/drug effects , HEK293 Cells , Humans , L Cells , Lipopolysaccharides , Macrophages/metabolism , Mice , NF-kappa B p50 Subunit/antagonists & inhibitors , Phosphorylation/drug effects , Transcription Factor RelA/antagonists & inhibitors , Tyrosine/pharmacology , bcl-X Protein/biosynthesis
10.
Proc Natl Acad Sci U S A ; 112(11): E1288-96, 2015 Mar 17.
Article in English | MEDLINE | ID: mdl-25737542

ABSTRACT

BH3 mimetics such as ABT-263 induce apoptosis in a subset of cancer models. However, these drugs have shown limited clinical efficacy as single agents in small-cell lung cancer (SCLC) and other solid tumor malignancies, and rational combination strategies remain underexplored. To develop a novel therapeutic approach, we examined the efficacy of ABT-263 across >500 cancer cell lines, including 311 for which we had matched expression data for select genes. We found that high expression of the proapoptotic gene Bcl2-interacting mediator of cell death (BIM) predicts sensitivity to ABT-263. In particular, SCLC cell lines possessed greater BIM transcript levels than most other solid tumors and are among the most sensitive to ABT-263. However, a subset of relatively resistant SCLC cell lines has concomitant high expression of the antiapoptotic myeloid cell leukemia 1 (MCL-1). Whereas ABT-263 released BIM from complexes with BCL-2 and BCL-XL, high expression of MCL-1 sequestered BIM released from BCL-2 and BCL-XL, thereby abrogating apoptosis. We found that SCLCs were sensitized to ABT-263 via TORC1/2 inhibition, which led to reduced MCL-1 protein levels, thereby facilitating BIM-mediated apoptosis. AZD8055 and ABT-263 together induced marked apoptosis in vitro, as well as tumor regressions in multiple SCLC xenograft models. In a Tp53; Rb1 deletion genetically engineered mouse model of SCLC, the combination of ABT-263 and AZD8055 significantly repressed tumor growth and induced tumor regressions compared with either drug alone. Furthermore, in a SCLC patient-derived xenograft model that was resistant to ABT-263 alone, the addition of AZD8055 induced potent tumor regression. Therefore, addition of a TORC1/2 inhibitor offers a therapeutic strategy to markedly improve ABT-263 activity in SCLC.


Subject(s)
Aniline Compounds/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Lung Neoplasms/drug therapy , Small Cell Lung Carcinoma/drug therapy , Sulfonamides/therapeutic use , Aniline Compounds/pharmacology , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Apoptosis Regulatory Proteins/metabolism , Bcl-2-Like Protein 11 , Cell Line, Tumor , Dose-Response Relationship, Drug , Genetic Engineering , Humans , Inhibitory Concentration 50 , Lung Neoplasms/pathology , Mechanistic Target of Rapamycin Complex 1 , Mechanistic Target of Rapamycin Complex 2 , Membrane Proteins/metabolism , Mice , Morpholines/pharmacology , Morpholines/therapeutic use , Multiprotein Complexes/antagonists & inhibitors , Multiprotein Complexes/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Proto-Oncogene Proteins/metabolism , Remission Induction , Small Cell Lung Carcinoma/pathology , Sulfonamides/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Xenograft Model Antitumor Assays
11.
Biochemistry ; 53(50): 7929-44, 2014 Dec 23.
Article in English | MEDLINE | ID: mdl-25400026

ABSTRACT

Human NEMO (NF-κB essential modulator) is a 419 residue scaffolding protein that, together with catalytic subunits IKKα and IKKß, forms the IκB kinase (IKK) complex, a key regulator of NF-κB pathway signaling. NEMO is an elongated homodimer comprising mostly α-helix. It has been shown that a NEMO fragment spanning residues 44-111, which contains the IKKα/ß binding site, is structurally disordered in the absence of bound IKKß. Herein we show that enforcing dimerization of NEMO1-120 or NEMO44-111 constructs through introduction of one or two interchain disulfide bonds, through oxidation of the native Cys54 residue and/or at position 107 through a Leu107Cys mutation, induces a stable α-helical coiled-coil structure that is preorganized to bind IKKß with high affinity. Chemical and thermal denaturation studies showed that, in the context of a covalent dimer, the ordered structure was stabilized relative to the denatured state by up to 3 kcal/mol. A full-length NEMO-L107C protein formed covalent dimers upon treatment of mammalian cells with H2O2. Furthermore, NEMO-L107C bound endogenous IKKß in A293T cells, reconstituted TNF-induced NF-κB signaling in NEMO-deficient cells, and interacted with TRAF6. Our results indicate that the IKKß binding domain of NEMO possesses an ordered structure in the unbound state, provided that it is constrained within a dimer as is the case in the constitutively dimeric full-length NEMO protein. The stability of the NEMO coiled coil is maintained by strong interhelix interactions in the region centered on residue 54. The disulfide-linked constructs we describe herein may be useful for crystallization of NEMO's IKKß binding domain in the absence of bound IKKß, thereby facilitating the structural characterization of small-molecule inhibitors.


Subject(s)
Disulfides/chemistry , Disulfides/metabolism , I-kappa B Kinase/chemistry , I-kappa B Kinase/metabolism , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/metabolism , Animals , Binding Sites , Cell Line , Humans , Hydrogen Peroxide/pharmacology , I-kappa B Kinase/genetics , Intracellular Signaling Peptides and Proteins/genetics , Mice , Oxidants/pharmacology , Protein Stability/drug effects , Protein Structure, Secondary , TNF Receptor-Associated Factor 6/chemistry , TNF Receptor-Associated Factor 6/genetics , TNF Receptor-Associated Factor 6/metabolism
12.
Cancer Discov ; 4(1): 42-52, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24163374

ABSTRACT

Colorectal cancers harboring KRAS or BRAF mutations are refractory to current targeted therapies. Using data from a high-throughput drug screen, we have developed a novel therapeutic strategy that targets the apoptotic machinery using the BCL-2 family inhibitor ABT-263 (navitoclax) in combination with a TORC1/2 inhibitor, AZD8055. This combination leads to efficient apoptosis specifically in KRAS- and BRAF-mutant but not wild-type (WT) colorectal cancer cells. This specific susceptibility results from TORC1/2 inhibition leading to suppression of MCL-1 expression in mutant, but not WT, colorectal cancers, leading to abrogation of BIM/MCL-1 complexes. This combination strategy leads to tumor regressions in both KRAS-mutant colorectal cancer xenograft and genetically engineered mouse models of colorectal cancer, but not in the corresponding KRAS-WT colorectal cancer models. These data suggest that the combination of BCL-2/BCL-XL inhibitors with TORC1/2 inhibitors constitutes a promising targeted therapy strategy to treat these recalcitrant cancers.


Subject(s)
Aniline Compounds/therapeutic use , Antineoplastic Agents/therapeutic use , Colorectal Neoplasms/drug therapy , Morpholines/therapeutic use , Multiprotein Complexes/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Sulfonamides/therapeutic use , TOR Serine-Threonine Kinases/antagonists & inhibitors , Aniline Compounds/pharmacology , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Colorectal Neoplasms/genetics , Humans , Mechanistic Target of Rapamycin Complex 1 , Mechanistic Target of Rapamycin Complex 2 , Mice , Mice, Mutant Strains , Mice, Nude , Morpholines/pharmacology , Mutation , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras) , Sulfonamides/pharmacology , bcl-X Protein/antagonists & inhibitors , ras Proteins/genetics
13.
Cancer Lett ; 318(1): 53-60, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22155272

ABSTRACT

In this report, we investigated the effects of the natural product parthenolide on human B-lymphoma cell lines. We show that parthenolide inhibited NF-κB transcription factor c-Rel (REL). In addition, the sensitivity of several human B-lymphoma cell lines to parthenolide-induced apoptosis inversely correlated with their levels of anti-apoptosis protein Bcl-X(L). Furthermore, ectopic expression of Bcl-X(L) (but not Bcl-2) in two B-lymphoma cell lines decreased their sensitivity to parthenolide-induced apoptosis. Finally, over-expression of a transforming mutant of REL, which increased expression of endogenous Bcl-X(L), decreased the sensitivity of BJAB B-lymphoma cells to parthenolide-induced apoptosis. These results demonstrate that the NF-κB target gene products Bcl-X(L) and Bcl-2 can play different roles in protecting B-lymphoma cells from chemical-induced apoptosis.


Subject(s)
Apoptosis/drug effects , DNA-Binding Proteins/metabolism , Lymphoma, B-Cell/drug therapy , Lymphoma, B-Cell/pathology , Nuclear Proteins/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Sesquiterpenes/pharmacology , bcl-X Protein/metabolism , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Blotting, Western , Cell Proliferation/drug effects , DNA, Neoplasm/genetics , DNA, Neoplasm/metabolism , Electrophoretic Mobility Shift Assay , Humans , Lymphoma, B-Cell/metabolism , NF-kappa B/antagonists & inhibitors , NF-kappa B/genetics , NF-kappa B/metabolism , Proto-Oncogene Proteins c-rel , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...