Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36770688

ABSTRACT

Alzheimer's disease (AD) is a serious neurodegenerative brain disease that interferes with daily life. The accumulation of beta-amyloid (Aß), along with oxidative stress-inducing neurocellular apoptosis, has been considered one of the causes of AD. Thus, the purpose of this study is to find natural products that can reduce Aß accumulation. The ethanol extract of Metasequoia glyptostroboides Hu & Cheng fruits (Cupressaceae) significantly reduced the aggregation of Aß into oligomers and fibrils determined by Thioflavin T (ThT) assay. The solvent-partitioned ethyl acetate layer was further separated based on the bioassay-guided isolation method combined with the ThT assay. As a result, five compounds were isolated and elucidated as taxoquinone (1), sugiol (2), suginal (3), sandaracopimarinol (4), and sandaracopimaradien-19-ol (5) by comparing NMR data with references. All the compounds significantly reduced the aggregation of Aß and enhanced the disaggregation of pre-formed Aß aggregates in a dose-dependent manner. Furthermore, the inhibition of Aß aggregation by the compounds protected PC12 cells from Aß aggregate-induced toxicity. Among the five compounds, sandaracopimarinol (4) and sandaracopimaradien-19-ol (5) were the most effective. These results suggest that M. glyptostroboides and isolated five compounds have a potential for further study to be developed as anti-AD agents.


Subject(s)
Alzheimer Disease , Cupressaceae , Rats , Animals , Humans , Fruit , Amyloid beta-Peptides/chemistry , Peptide Fragments/chemistry
2.
Molecules ; 24(23)2019 Nov 25.
Article in English | MEDLINE | ID: mdl-31775356

ABSTRACT

Alzheimer's disease (AD) is a progressive, neurodegenerative brain disorder associated with loss of memory and cognitive function. Beta-amyloid (Aß) aggregates, in particular, are known to be highly neurotoxic and lead to neurodegeneration. Therefore, blockade or reduction of Aß aggregation is a promising therapeutic approach in AD. We have previously reported an inhibitory effect of the methanol extract of Perilla frutescens (L.) Britton (Lamiaceae) and its hexane fraction on Aß aggregation. Here, the hexane fraction of P. frutescens was subjected to diverse column chromatography based on activity-guided isolation methodology. This approach identified five asarone derivatives including 2,3-dimethoxy-5-(1E)-1-propen-1-yl-phenol (1), ß-asarone (2), 3-(2,4,5-trimethoxyphenyl)-(2E)-2-propen-1-ol (3), asaronealdehyde (4), and α-asarone (5). All five asarone derivatives efficiently reduced the aggregation of Aß and disaggregated preformed Aß aggregates in a dose-dependent manner as determined by a Thioflavin T (ThT) fluorescence assay. Furthermore, asarone derivatives protected PC12 cells from Aß aggregate-induced toxicity by reducing the aggregation of Aß, and significantly reduced NO production from LPS-stimulated BV2 microglial cells. Taken together, these results suggest that asarone derivatives derived from P. frutescens are neuroprotective and have the prophylactic and therapeutic potential in AD.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid beta-Peptides/antagonists & inhibitors , Anisoles/chemistry , Protein Aggregation, Pathological/drug therapy , Allylbenzene Derivatives , Alzheimer Disease/pathology , Amyloid beta-Peptides/chemistry , Animals , Anisoles/isolation & purification , Humans , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , PC12 Cells , Perilla frutescens/chemistry , Plant Leaves/chemistry , Protein Aggregation, Pathological/pathology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...