Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-32070951

ABSTRACT

Sparse arrays have been studied mainly to reduce the large numbers of elements in 2-D arrays. However, they can also provide an effective means of miniaturizing ultrasound 1-D array systems for point-of-care applications. Although a variety of sparse array design strategies have been proposed, designing an optimum sparse array to simultaneously satisfy the system specification requirements and performance criteria remains a challenge. This article presents an analytical approach for the design of an optimum pair of periodic sparse arrays (PSAs), one for transmission and the other for reception. The approach is based on three newly derived theorems that describe the most important properties of the two PSAs forming the sparse array pair and their relationship pertaining to the overall beam pattern. The proposed approach can be used to design 1-D sparse array pairs with arbitrary sparseness factors while meeting given performance criteria. The computer simulation verified that the spatial resolution of a 64-element phased array can be obtained with a PSA pair consisting of transmit and receive sparse arrays, of which the number of elements is reduced to 32 and 22, respectively.

2.
Sensors (Basel) ; 19(19)2019 Sep 22.
Article in English | MEDLINE | ID: mdl-31546705

ABSTRACT

This paper reports the feasibility of Nakagami imaging in monitoring the regeneration process of zebrafish hearts in a noninvasive manner. In addition, spectral Doppler waveforms that are typically used to access the diastolic function were measured to validate the performance of Nakagami imaging. A 30-MHz high-frequency ultrasound array transducer was used to acquire backscattered echo signal for spectral Doppler and Nakagami imaging. The performances of both methods were validated with flow and tissue-mimicking phantom experiments. For in vivo experiments, both spectral Doppler and Nakagami imaging were simultaneously obtained from adult zebrafish with amputated hearts. Longitudinal measurements were performed for five zebrafish. From the experiments, the E/A ratio measured using spectral Doppler imaging increased at 3 days post-amputation (3 dpa) and then decreased to the value before amputation, which were consistent with previous studies. Similar results were obtained from the Nakagami imaging where the Nakagami parameter value increased at 3 dpa and decreased to its original value. These results suggested that the Nakagami and spectral Doppler imaging would be useful techniques in monitoring the regeneration of heart or tissues.


Subject(s)
Heart/physiology , Regeneration/physiology , Ultrasonography/methods , Animals , Image Enhancement , Zebrafish
3.
Sensors (Basel) ; 18(10)2018 Oct 02.
Article in English | MEDLINE | ID: mdl-30279390

ABSTRACT

Software-based ultrasound imaging systems provide high flexibility that allows easy and fast adoption of newly developed algorithms. However, the extremely high data rate required for data transfer from sensors (e.g., transducers) to the ultrasound imaging systems is a major bottleneck in the software-based architecture, especially in the context of real-time imaging. To overcome this limitation, in this paper, we present a Binary cLuster (BL) code, which yields an improved compression ratio compared to the exponential Golomb code. Owing to the real-time encoding/decoding features without overheads, the universal code is a good solution to reduce the data transfer rate for software-based ultrasound imaging. The performance of the proposed method was evaluated using in vitro and in vivo data sets. It was demonstrated that the BL-beta code has a good stable lossless compression performance of 20%~30% while requiring no auxiliary memory or storage.

SELECTION OF CITATIONS
SEARCH DETAIL
...