Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 12(53): 34660-34669, 2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36545616

ABSTRACT

Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) are major pathogens frequently detected in food and beverage poisoning, and persistent infections. Therefore, the development of a rapid method that can detect these pathogens before serious multiplication is required. In this study, we established a flow cytometry (FCM)-based detection method that allows rapid acquisition of cell populations in fluid samples by using a fluorescent antibody against S. aureus or P. aeruginosa. Using this method, we detected these pathogens with a 103 to 105 CFU order of limit of detection value within 1 hour. The FCM-based method for the detection of S. aureus and P. aeruginosa offers the possibility of high-throughput analysis of pathogens in food, environmental, and clinical sources.

2.
Medicina (Kaunas) ; 57(9)2021 Sep 18.
Article in English | MEDLINE | ID: mdl-34577904

ABSTRACT

Matrix metalloproteinase 9 (MMP9) is involved in several aspects of the pathology of cancer, including invasion, metastasis, and angiogenesis. In this study, we expressed a recombinant scFv-type anti-MMP9 antibody in soluble form using Escherichia coli, purified it, and confirmed its antigen-binding ability. The convenient, rapid, inexpressive system used in this study for producing recombinant antibody fragments needs only five days, and thus can be used for the efficient production of scFv against MMP9, which can be used in a range of applications and industrial fields, including diagnosis and treatment of inflammatory and cancer-related diseases.


Subject(s)
Immunoglobulin Fragments , Matrix Metalloproteinase 9 , Escherichia coli/genetics , Humans , Immunoglobulin Variable Region , Matrix Metalloproteinase 9/genetics , Recombinant Proteins
3.
Methods Protoc ; 3(2)2020 Jun 11.
Article in English | MEDLINE | ID: mdl-32545237

ABSTRACT

The problem of illicit drug use and addiction is an escalating issue worldwide. As such, fast and precise detection methods are needed to help combat the problem. Herein, the synthesis method for an anti-methamphetamine Quenchbody (Q-body), a promising sensor for use in simple and convenient assays, has been described. The fluorescence intensity of the Q-body generated by two-site labeling of Escherichia coli produced anti-methamphetamine antigen-binding fragment (Fab) with TAMRA-C2-maleimide dyes increased 5.1-fold over background in the presence of a hydroxyl methamphetamine derivative, 3-[(2S)-2-(methylamino)propyl]phenol. This derivative has the closest structure to methamphetamine of the chemicals available for use in a laboratory. Our results indicate the potential use of this Q-body as a novel sensor for the on-site detection of methamphetamine, in such occasions as drug screening at workplace, suspicious substance identification, and monitoring patients during drug rehabilitation.

SELECTION OF CITATIONS
SEARCH DETAIL
...