Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Biochem Biotechnol ; 195(6): 3628-3640, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36648604

ABSTRACT

C50 carotenoids, as unique bioactive molecules, have many biological properties, including antioxidant, anticancer, and antibacterial activity, and have a wide range of potential uses in the food, cosmetic, and biomedical industries. The majority of C50 carotenoids are produced by the sterile fermentation of halophilic archaea. This study aims to look at more cost-effective and manageable ways of producing C50 carotenoids. The basic medium, carbon source supplementation, and optimal culture conditions for Halorubrum sp. HRM-150 C50 carotenoids production by open fermentation were examined in this work. The results indicated that Halorubrum sp. HRM-150 grown in natural brine medium grew faster than artificial brine medium. The addition of glucose, sucrose, and lactose (10 g/L) enhanced both biomass and carotenoids productivity, with the highest level reaching 4.53 ± 0.32 µg/mL when glucose was added. According to the findings of orthogonal studies based on the OD600 and carotenoids productivity, the best conditions for open fermentation were salinity 20-25%, rotation speed 150-200 rpm, and pH 7.0-8.2. The up-scaled open fermentation was carried out in a 7 L medium under optimum culture conditions. At 96 h, the OD600 and carotenoids productivity were 9.86 ± 0.51 (dry weight 10.40 ± 1.27 g/L) and 7.31 ± 0.65 µg/mL (701.40 ± 21.51 µg/g dry weight, respectively). When amplified with both universal bacterial primer and archaeal primer in the open fermentation, Halorubrum remained the dominating species, indicating that contamination was kept within an acceptable level. To summarize, open fermentation of Halorubrum is a promising method for producing C50 carotenoids.


Subject(s)
Carotenoids , Halorubrum , Carotenoids/metabolism , Halorubrum/chemistry , Halorubrum/metabolism , Fermentation , Salts , Culture Media/chemistry
2.
Fish Shellfish Immunol ; 78: 338-345, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29684603

ABSTRACT

Outbreaks of edwardsiellosis have severe impact on the aquaculture production of African catfish Clarias gariepinus. In this study, feed supplemented with apple mangrove Sonneratia caseolaris extract was evaluated for its protective effect against Edwardsiella tarda infection in African catfish. Results showed an increase in growth performance and higher survival rate in the treatment groups in a dose dependent manner. Haematological analyses showed an increase in white blood cell count in the treatment groups. Histopathological analysis revealed degenerative changes and regeneration of liver tissue architecture in both the control and treatment groups. However, the presence of inflammatory cells was found exclusively in the kidney of T3 treatment group that was supplemented with the highest dose of extract at 3.17 mg/ml, which inferred the activation of immune response in the fish. Contrast to the deteriorative alteration observed in the kidney of the control group due to E. tarda infection, treatment group exhibited tissue regeneration and well-defined kidney tissue architecture at 3 dpi. Taken together, these results demonstrated that supplementation with the methanol extract of S. caseolaris possesses protective effect in African catfish against the infection of E. tarda.


Subject(s)
Catfishes/immunology , Fish Diseases/immunology , Immunity, Innate , Lythraceae/chemistry , Plant Extracts/pharmacology , Protective Agents/pharmacology , Animal Feed/analysis , Animals , Catfishes/growth & development , Diet/veterinary , Dietary Supplements/analysis , Dose-Response Relationship, Drug , Edwardsiella tarda/physiology , Enterobacteriaceae Infections/immunology , Random Allocation
3.
Genom Data ; 10: 12-4, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27625991

ABSTRACT

Mameliella alba strain UMTAT08 was isolated from clonal culture of paralytic shellfish toxin producing dinoflagellate, Alexandrium tamiyavanichii. Genome of the strain UMTAT08 was sequenced in order to gain insights into the dinoflagellate-bacteria interactions. The draft genome sequence of strain UMTAT08 contains 5.84Mbp with an estimated G + C content of 65%, 5717 open reading frames, 5 rRNAs and 49 tRNAs. It contains genes related to nutrients uptake, quorum sensing and environmental tolerance related genes. Gene clusters for the biosynthesis of type 1 polyketide synthase, bacteriocin, microcin, terpene and ectoine were also identified. This is suggesting that the bacterium possesses diverse adaptation strategy to survive within the dinoflagellate phycosphere. The draft genome sequence and annotation have been deposited at DDBJ/EMBL/GenBank under the accession number JSUQ00000000.

SELECTION OF CITATIONS
SEARCH DETAIL
...