Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; 11(14): e2308033, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38303577

ABSTRACT

Miniature locomotion robots with the ability to navigate confined environments show great promise for a wide range of tasks, including search and rescue operations. Soft miniature locomotion robots, as a burgeoning field, have attracted significant research interest due to their exceptional terrain adaptability and safety features. Here, a fully-soft centimeter-scale miniature crawling robot directly powered by fluid kinetic energy generated by an electrohydraulic actuator is introduced. Through optimization of the operating voltage and design parameters, the average crawling velocity of the robot is dramatically enhanced, reaching 16 mm s-1. The optimized robot weighs 6.3 g and measures 5 cm in length, 5 cm in width, and 6 mm in height. By combining two robots in parallel, the robot can achieve a turning rate of ≈3° s-1. Additionally, by reconfiguring the distribution of electrodes in the electrohydraulic actuator, the robot can achieve 2 degrees-of-freedom translational motion, improving its maneuverability in narrow spaces. Finally, the use of a soft water-proof skin is demonstrated for underwater locomotion and actuation. In comparison with other soft miniature crawling robots, this robot with full softness can achieve relatively high crawling velocity as well as increased robustness and recovery.

2.
J Neuroeng Rehabil ; 20(1): 120, 2023 09 21.
Article in English | MEDLINE | ID: mdl-37735679

ABSTRACT

BACKGROUND: Chronic stroke patients usually experience reduced hand functions, impeding their ability to perform activities of daily living (ADLs) independently. Additionally, improvements in hand functions by physical therapy beyond six months after the initial onset of stroke are much slower than in the earlier months. As such, chronic stroke patients could benefit from an assistive device to enhance their hand functions, allowing them to perform ADLs independently daily. In recent years, soft robotics has provided a novel approach to assistive devices for motor impaired individuals, offering more compliant and lightweight alternatives to traditional robotic devices. The scope of this study is to demonstrate the viability of a fabric-based soft robotic (SR) glove with bidirectional actuators in assisting chronic stroke study participants with hand impairments in performing ADLs. METHODS: Force and torque measurement tests were conducted to characterize the SR Glove, and hand functional tasks were given to eight chronic stroke patients to assess the efficacy of the SR Glove as an assistive device. The tasks involved object manipulation tasks that simulate ADLs, and the series of tasks was done by the participants once without assistance for baseline data, and once while using the SR Glove. A usability questionnaire was also given to each participant after the tasks were done to gain insight into how the SR Glove impacts their confidence and reliance on support while performing ADLs. RESULTS: The SR Glove improved the participants' manipulation of objects in ADL tasks. The difference in mean scores between the unassisted and assisted conditions was significant across all participants. Additionally, the usability questionnaire showed the participants felt more confident and less reliant on support while using the SR Glove to perform ADLs than without the SR Glove. CONCLUSIONS: The results from this study demonstrated that the SR Glove is a viable option to assist hand function in chronic stroke patients who suffer from hand motor impairments.


Subject(s)
Robotics , Stroke , Humans , Activities of Daily Living , Hand , Upper Extremity , Stroke/complications
3.
Soft Robot ; 10(5): 923-936, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37042707

ABSTRACT

The development of the field of soft robotics has led to the exploration of novel techniques to manufacture soft actuators, which provide distinct advantages for wearable assistive robotics. One subset of these soft pneumatic actuators is conventionally developed from silicone, fabrics, and thermoplastic polyurethane (TPU). Each of these materials in isolation possesses limitations of low-stress capacity, low-design complexity, and high-input pressure requirements, respectively. Combining these materials can overcome some limitations and maintain their desirable properties. In this article, we explore one such composite design scheme using a combination of silicone polymer-based bladder and reconfigurable fabric skin made from an anisotropic extensible fabric. The silicone polymer bladder acts as the hermetic seal, while this skin acts as the constraint. Bending and torsional actuators were designed utilizing the anisotropy of these fabrics. The torsional actuator designs can achieve over 540° of twist, significantly larger than previously reported in the literature, owing to the lower mechanical impedance of the extensible fabrics. Actuators with 360° of bending were also fabricated using this method. In addition, the lack of TPU-backed or inextensible fabrics reduces the actuator's stiffness, leading to lower actuation pressures. Skin-based designs also confer the advantage of modularity, reconfigurability, and the ability to achieve complex motions by tuning the properties of the bladder and the skin. For applications with high-force requirements, such as wearable exoskeletons, we demonstrate the utility of multilayer design schemes. A multilayer bending actuator generated 190 N of force at 100 kPa and was shown to be a candidate for wearable assistive devices. In addition, torsional designs were shown to have utility in practical scenarios such as screwing on a bottle cap and turning knobs. Thus, we present a novel fabric-skin-based design concept that is highly versatile and customizable for various application requirements.

4.
Soft Robot ; 10(2): 431-442, 2023 04.
Article in English | MEDLINE | ID: mdl-36318510

ABSTRACT

The evolution of wearable technologies has led to the development of novel types of sensors customized for a wide range of applications. Wearable sensors need to possess a low form factor and be ergonomic, causing minimal impediment of the user's natural movement. Various principles have been explored to meet these requirements, ranging from optical, magnetic, resistive flex sensing to 3D printed sensors and liquid metals such as those using eutectic gallium-indium. However, manufacturing techniques for most current wearable sensors tend to be complex and difficult to scale. Challenges also exist in achieving high sensitivity with noise resistance and robustness to false detections, especially in capacitive sensors. In this research, a novel ultralow-latency soft tactile and pressure sensor developed using off-the-shelf e-textiles is proposed, which overcomes some of these limitations. The sensor does not use any specialized equipment or materials for manufacture. A human-in-loop (HIL) sensing technique is demonstrated, which provides high sensitivity, high sensing bandwidth, as well as ultralow latency, which makes it ideal as a wearable input device. In addition, the HIL method provides other advantages such as high noise rejection and resistance to accidental triggers that could be caused by other humans or environmental factors owing to its high signal to noise ratio. Finally, two applications-a wearable keyboard and gaming input device-were demonstrated using these sensors.


Subject(s)
Wearable Electronic Devices , Humans , Movement , Textiles , Pressure , Touch
5.
Front Robot AI ; 9: 835237, 2022.
Article in English | MEDLINE | ID: mdl-35572371

ABSTRACT

Leg motion is essential to everyday tasks, yet many face a daily struggle due to leg motion impairment. Traditional robotic solutions for lower limb rehabilitation have arisen, but they may bare some limitations due to their cost. Soft robotics utilizes soft, pliable materials which may afford a less costly robotic solution. This work presents a soft-pneumatic-actuator-driven exoskeleton for hip flexion rehabilitation. An array of soft pneumatic rotary actuators is used for torque generation. An analytical model of the actuators is validated and used to determine actuator parameters for the target application of hip flexion. The performance of the assembly is assessed, and it is found capable of the target torque for hip flexion, 19.8 Nm at 30°, requiring 86 kPa to reach that torque output. The assembly exhibits a maximum torque of 31 Nm under the conditions tested. The full exoskeleton assembly is then assessed with healthy human subjects as they perform a set of lower limb motions. For one motion, the Leg Raise, a muscle signal reduction of 43.5% is observed during device assistance, as compared to not wearing the device. This reduction in muscle effort indicates that the device is effective in providing hip flexion assistance and suggests that pneumatic-rotary-actuator-driven exoskeletons are a viable solution to realize more accessible options for those who suffer from lower limb immobility.

6.
ACS Appl Mater Interfaces ; 14(1): 2301-2315, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34962370

ABSTRACT

Freeform liquid three-dimensional printing (FL-3DP) is a promising new additive manufacturing process that uses a yield stress gel as a temporary support, enabling the processing of a broader class of inks into complex geometries, including those with low viscosities or long solidification kinetics that were previously not processable. However, the full exploitation of these advantages for the fabrication of complex multilateral structures has been hindered by difficulties in controlling the interfaces between inks and supports. In this work, an in-depth study of the rheological properties and interfacial stabilities between a nanoclay-modified support and silicone-based inks enabled a better understanding of the impact printing parameters have on the extruded filament morphology, and thus on printing resolutions. With these improvements, the fabrication of functional multimaterial pneumatic components applied to soft robotics could be demonstrated, exhibiting superior capabilities compared to casting or traditional extrusion-based additive manufacturing in terms of geometric freedom (overhanging and multimaterial structures), tunability of the component's functionality, and robustness between different phases. Overall, the full exploitation of FL-3DP advantages enables a broader design space for features and functionalities in soft robotic components that require complex and robust combinations of materials.

7.
Soft Robot ; 9(3): 451-472, 2022 06.
Article in English | MEDLINE | ID: mdl-34101506

ABSTRACT

Fiber-reinforced soft pneumatic actuators (FR-SPAs) are among the most successful soft actuators in the soft robotics community considering their structural strength, motion range, and force output. Inspired by the pneumatic artificial muscle, the bending-type tubular SPAs have also been applied with fiber winding for body reinforcement and then utilized in many applications. Due to their superior utility and popularity, FR-SPAs have been extensively modeled using different methods. However, very little attention was given to the compression on the inner wall of the FR-SPAs by the compressed air. Furthermore, there is no unified modeling principle for bending, force output, and deflection of the FR-SPA. In this article, we take into account the inner compression and propose a static modeling approach based on the moment equilibrium for three important and frequently studied cases: free bending, block force, and deflection upon block force of the FR-SPA. Stress analysis of the material inside the fiber wall is conducted, which reveals the influence of radial compression by the input air. Then, the new stress expression is used in the moment equilibrium and results in the SPA models for the three aforementioned cases. The models are experimentally verified using SPAs featuring two profile designs and three different silicone rubbers. The results show that the placement of the fiber wall plays an important role in the SPA behavior. More importantly, the models successfully differentiate the two profiles and produce fairly accurate predictions of the bending angles, block forces, and deflections. The understanding of the compression effect offers a new variable in the FR-SPA design process, which can be used to tune the SPA properties for different applications.


Subject(s)
Robotics , Equipment Design , Mechanical Phenomena , Pressure
8.
Adv Sci (Weinh) ; 8(14): e2100230, 2021 07.
Article in English | MEDLINE | ID: mdl-34037331

ABSTRACT

Rapid advancements of artificial intelligence of things (AIoT) technology pave the way for developing a digital-twin-based remote interactive system for advanced robotic-enabled industrial automation and virtual shopping. The embedded multifunctional perception system is urged for better interaction and user experience. To realize such a system, a smart soft robotic manipulator is presented that consists of a triboelectric nanogenerator tactile (T-TENG) and length (L-TENG) sensor, as well as a poly(vinylidene fluoride) (PVDF) pyroelectric temperature sensor. With the aid of machine learning (ML) for data processing, the fusion of the T-TENG and L-TENG sensors can realize the automatic recognition of the grasped objects with the accuracy of 97.143% for 28 different shapes of objects, while the temperature distribution can also be obtained through the pyroelectric sensor. By leveraging the IoT and artificial intelligence (AI) analytics, a digital-twin-based virtual shop is successfully implemented to provide the users with real-time feedback about the details of the product. In general, by offering a more immersive experience in human-machine interactions, the proposed remote interactive system shows the great potential of being the advanced human-machine interface for the applications of the unmanned working space.

9.
IEEE Trans Biomed Eng ; 67(12): 3339-3351, 2020 12.
Article in English | MEDLINE | ID: mdl-32248089

ABSTRACT

OBJECTIVE: This randomized controlled feasibility study investigates the ability for clinical application of the Brain-Computer Interface-based Soft Robotic Glove (BCI-SRG) incorporating activities of daily living (ADL)-oriented tasks for stroke rehabilitation. METHODS: Eleven recruited chronic stroke patients were randomized into BCI-SRG or Soft Robotic Glove (SRG) group. Each group underwent 120-minute intervention per session comprising 30-minute standard arm therapy and 90-minute experimental therapy (BCI-SRG or SRG). To perform ADL tasks, BCI-SRG group used motor imagery-BCI and SRG, while SRG group used SRG without motor imagery-BCI. Both groups received 18 sessions of intervention over 6 weeks. Fugl-Meyer Motor Assessment (FMA) and Action Research Arm Test (ARAT) scores were measured at baseline (week 0), post- intervention (week 6), and follow-ups (week 12 and 24). In total, 10/11 patients completed the study with 5 in each group and 1 dropped out. RESULTS: Though there were no significant intergroup differences for FMA and ARAT during 6-week intervention, the improvement of FMA and ARAT seemed to sustain beyond 6-week intervention for BCI-SRG group, as compared with SRG control. Incidentally, all BCI-SRG subjects reported a sense of vivid movement of the stroke-impaired upper limb and 3/5 had this phenomenon persisting beyond intervention while none of SRG did. CONCLUSION: BCI-SRG suggested probable trends of sustained functional improvements with peculiar kinesthetic experience outlasting active intervention in chronic stroke despite the dire need for large-scale investigations to verify statistical significance. SIGNIFICANCE: Addition of BCI to soft robotic training for ADL-oriented stroke rehabilitation holds promise for sustained improvements as well as elicited perception of motor movements.


Subject(s)
Brain-Computer Interfaces , Robotics , Stroke Rehabilitation , Stroke , Activities of Daily Living , Electroencephalography , Humans , Treatment Outcome , Upper Extremity
10.
IEEE Int Conf Rehabil Robot ; 2019: 380-385, 2019 06.
Article in English | MEDLINE | ID: mdl-31374659

ABSTRACT

Soft robotic fingers have shown great potential for use in prostheses due to their inherent compliant, light, and dexterous nature. Recent advancements in sensor technology for soft robotic systems showcase their ability to perceive and respond to static cues. However, most of the soft fingers for use in prosthetic applications are not equipped with sensors which have the ability to perceive texture like humans can. In this work, we present a dexterous, soft, biomimetic solution which is capable of discrimination of textures. We fabricated a soft finger with two individually controllable degrees of freedom with a tactile sensor embedded at the fingertip. The output of the tac- tile sensor, as texture plates were palpated, was converted into spikes, mimicking the behavior of a biological mechanoreceptor. We explored the spatial properties of the textures captured in the form of spiking patterns by generating spatial event plots and analyzing the similarity between spike trains generated for each texture. Unique features representative of the different textures were then extracted from the spikes and input to a classifier. The textures were successfully classified with an accuracy of 94% when palpating at a rate of 42 mm/s. This work demonstrates the potential of providing amputees with a soft finger with sensing capabilities, which could potentially help discriminate between different objects and surfaces during activities of daily living (ADL) through palpation.


Subject(s)
Activities of Daily Living , Artificial Limbs , Biomimetic Materials , Fingers , Robotics , Touch , Equipment Design , Humans
11.
IEEE J Transl Eng Health Med ; 7: 4100106, 2019.
Article in English | MEDLINE | ID: mdl-31065466

ABSTRACT

BACKGROUND AND OBJECTIVE: Immobility of the lower extremity due to medical conditions such as stroke can lead to medical complications such as deep vein thrombosis or ankle contracture, and thereafter prolonged recovery process of the patients. In this preliminary clinical study, we aimed to examine the effect of a novel soft robotic sock device, capable of providing assisted ankle exercise, in improving blood flow in the lower limb to prevent the complication of strokes such as deep vein thrombosis and joint contracture. METHODS: Stroke patients were recruited (n = 17) to compare patients using the conventional pneumatic compression device with our robotic sock device on separate days. The primary outcome was to compare the venous flow profile of the superficial femoral vein in terms of the time average mean velocity and volumetric flow. The secondary outcome was to identify the ankle joint range of motion with the assistance of the device. RESULTS: We noted improvements in the venous profile at the early phase of the device use, though its efficacy seemed to drop with time, as compared to the IPC device, where there was a significant improvement in the venous profile. The ankle joint dorsiflexion-plantarflexion range of motion assisted by the device was 11.5±6.3°. Conclusion and clinical impact: The current version of our sock device appears to be capable of improving venous blood flow in the early phase of device use and assisting with ankle joint exercise. The insights from this preliminary clinical study will serve as the basis for further improvement of the device and subsequent conduct of a longitudinal clinical trial. FUNDING: National Health Innovation Centre Singapore (NHIC) grant, R-172-000-391-511, MOE AcRF Tier 1 R-397-000-301-114.

12.
Soft Robot ; 6(4): 455-467, 2019 08.
Article in English | MEDLINE | ID: mdl-30883283

ABSTRACT

This article presents a versatile soft crawling robot capable of rapid and effective locomotion. The robot mainly consists of two vacuum-actuated spring actuators and two electrostatic actuators. By programming the actuation sequences of different actuators, the robot is able to achieve two basic modes of locomotion: linear motion and turning. Subsequently, we have developed analytical models to interpret the static actuation performance of the robot body, including linear and bending motions. Moreover, an empirical dynamic model is also developed to optimize the locomotion speed in terms of frequency and duty cycle of the actuation signal. Furthermore, with the help of the strong electroadhesion force and fast response of the deformable body, the soft robot achieves a turning speed of 15.09°/s, which is one of the fastest among existing soft crawling robots to the best of our knowledge. In addition to the rapid and effective locomotion, the soft crawling robot can also achieve multiple impressive functions, including obstacle navigation in confined spaces, climbing a vertical wall with a speed of 6.67 mm/s (0.049 body length/s), carrying a payload of 69 times its self-weight on a horizontal surface, crossing over a 2 cm (0.15 body length) gap, and kicking a ball.

13.
Assist Technol ; 31(1): 44-52, 2019.
Article in English | MEDLINE | ID: mdl-28750190

ABSTRACT

The modeling and experimentation of a pneumatic actuation system for the development of a soft robotic therapeutic glove is proposed in this article for the prevention of finger deformities in rheumatoid arthritis (RA) patients. The Rehabilitative Arthritis Glove (RA-Glove) is a soft robotic glove fitted with two internal inflatable actuators for lateral compression and massage of the fingers and their joints. Two mechanical models to predict the indentation and bending characteristics of the inflatable actuators based on their geometrical parameters will be presented and validated with experimental results. Experimental validation shows that the model was within a standard deviation of the experimental mean for input pressure range of 0 to 2 bars. Evaluation of the RA-Glove was also performed on six healthy human subjects. The stress distribution along the fingers of the subjects using the RA-Glove was also shown to be even and specific to the finger sizes. This article demonstrates the modeling of soft pneumatic actuators and highlights the potential of the RA-Glove as a therapeutic device for the prevention of arthritic deformities of the fingers.


Subject(s)
Arthritis, Rheumatoid/therapy , Exoskeleton Device , Prosthesis Design/methods , Adult , Female , Fingers/physiology , Humans , Male , Pressure , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...