Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 13(20): 13919-13927, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37181513

ABSTRACT

Lightweight iron oxide nanoparticle (IONP)/TEMPO-oxidized cellulose nanofibril (TOCNF) hybrid foams with an anisotropic structure and a high IONP content were produced using magnetic field-enhanced unidirectional ice-templating. Coating the IONP with tannic acid (TA) improved the processability, the mechanical performance, and the thermal stability of the hybrid foams. Increasing the IONP content (and density) increased the Young's modulus and toughness probed in compression, and hybrid foams with the highest IONP content were relatively flexible and could recover 14% axial compression. Application of a magnetic field in the freezing direction resulted in the formation of IONP chains that decorated the foam walls and the foams displayed a higher magnetization saturation, remanence, and coercivity compared to the ice-templated hybrid foams. The hybrid foam with an IONP content of 87% displayed a saturation magnetization of 83.2 emu g-1, which is 95% of the value for bulk magnetite. Highly magnetic hybrid foams are of potential interest for environmental remediation, energy storage, and electromagnetic interference shielding.

2.
Mater Sci Eng C Mater Biol Appl ; 91: 382-388, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30033268

ABSTRACT

The use of materials as implants has become vital for determining optimal product design to enhance the needs of usage and longevity in body. Ultrafine grained pure titanium offers advanced mechanical properties for medical applications for most adequate materials meso/micro scaled dental implants. Besides advanced mechanical properties, increased surface properties also offers enhance biocompatibility. In this experimental study, the effects of bulk structure on surface modification by sand blasting for coarse-grained and ultrafine-grained (UFG) commercially pure titanium reported. To determine the effects of bulk structure on the polished and modified surfaces the specimen groups are investigated using Optic Microscope (OM), Electron Back Scattering Diffraction (EBSD) and Confocal Laser-Scanning Microscope (CLSM). Surface roughness is determined with stylus profilometer (SP) and CLSM. Understanding the biocompatibility of titanium surfaces to cell-cell interactions and cell proliferation capacity of attached-cells were determined by cell viability assays and fluorescence microscopy techniques. According to our results, the titanium surfaces were highly available to cell attachment and cell proliferation. The ratios of cell proliferation of cells which are attached on different titanium surfaces were dependent on the grain size and the surface roughness. UFG and blasted surfaces are more suitable for cell proliferation of human gingival fibroblast cells.


Subject(s)
Cell Communication/drug effects , Cell Proliferation/drug effects , Fibroblasts/metabolism , Gingiva/metabolism , Materials Testing , Titanium , Cell Adhesion/drug effects , Cell Line , Fibroblasts/pathology , Gingiva/pathology , Humans , Surface Properties , Titanium/adverse effects , Titanium/chemistry , Titanium/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...