Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(9): e0271208, 2022.
Article in English | MEDLINE | ID: mdl-36174070

ABSTRACT

Coastal wetlands are ecosystems associated with intense carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) recycling, modulated by salinity and other environmental factors that influence the microbial community involved in greenhouse gases production and consumption. In this study, we evaluated the influence of environmental factors on GHG concentration and benthic microbial community composition in coastal wetlands along the coast of the semiarid region. Wetlands were situated in landscapes along a south-north gradient of higher aridity and lower anthropogenic impact. Our results indicate that wetlands have a latitudinal variability associated with higher organic matter content at the north, especially in summer, and higher nutrient concentration at the south, predominantly in winter. During our sampling, wetlands were characterized by positive CO2 µM and CH4 nM excess, and a shift of N2O nM excess from negative to positive values from the north to the south. Benthic microbial communities were taxonomically diverse with > 60 phyla, especially in low frequency taxa. Highly abundant bacterial phyla were classified into Gammaproteobacteria (Betaproteobacteria order), Alphaproteobacteria and Deltaproteobacteria, including key functional groups such as nitrifying and methanotrophic bacteria. Generalized additive model (GAM) indicated that conductivity accounted for the larger variability of CH4 and CO2, but the predictions of CH4 and CO2 concentration were improved when latitude and pH concentration were included. Nitrate and latitude were the best predictors to account for the changes in the dissolved N2O distribution. Structural equation modeling (SEM), illustrated how the environment significantly influences functional microbial groups (nitrifiers and methane oxidizers) and their resulting effect on GHG distribution. Our results highlight the combined role of salinity and substrates of key functional microbial groups with metabolisms associated with both carbon and nitrogen, influencing dissolved GHG and their potential exchange in natural and anthropogenically impacted coastal wetlands.


Subject(s)
Alphaproteobacteria , Greenhouse Gases , Microbiota , Carbon Dioxide , Chile , Methane , Nitrates , Nitrogen , Nitrous Oxide , Wetlands
2.
Microbiologyopen ; 8(3): e00646, 2019 03.
Article in English | MEDLINE | ID: mdl-29799171

ABSTRACT

Nitrospina bacteria are among the most important nitrite oxidizers in coastal and open-ocean environments, but the relevance of the genus contrasts with the scarceness of information on their ecophysiology and habitat range. Thus far, Nitrospina bacteria have been the only nitrite oxidizers detected at high abundance in Chilean coastal waters. These levels are often higher than at other latitudes. In this study, the abundance of 16S-rRNA gene transcripts of Nitrospina (hereafter just transcripts) was measured by reverse transcription quantitative PCR in a rocky intertidal gradient and compared with the nearshore counterpart off central Chile (~33°S). Rocky pond transcripts were also compared with the taxonomic composition of the macrobiota and bacterioplankton (by 16S-rRNA gene-based T-RFLP) in the intertidal gradient. Transcripts increased from warmer, saltier, and low-nitrite ponds in the upper intertidal zone (19.5 ± 1.6°C, 39.0 ± 1.0 psu, 0.98 ± 0.17 µmol/L) toward cooler, less salty, and high-nitrite ponds (17.8 ± 2.6°C, 37.7 ± 0.82 psu, 1.23 ± 0.21 µmol/L) from middle and low zones. These varied from ~1,000 up to 62,800 transcripts. This increasing trend in the number of transcripts toward the lower zone was positively associated with the Shannon's diversity index for the macrobiota (r = .81, p < .01). Moreover, an important increase in the average number of transcripts was observed in ponds with a greater number of fish in the upper (7,846 transcripts during 2013) and lower zones (62,800 transcripts during 2015). Altogether, intertidal and nearshore transcripts were significantly correlated with nitrite concentrations (r = .804, p Ë‚ .01); rocky pond transcripts outnumbered nearshore ones by almost two orders of magnitude. In summary, rocky ponds favored both the presence and activity of Nitrospina bacteria that are tolerant to environmental stress. This in turn was positively influenced by the presence of ammonia- or urea-producing macrobiota.


Subject(s)
Bacteria/classification , Bacteria/genetics , RNA, Ribosomal, 16S/analysis , Water Microbiology , Bays , Chile , Gene Dosage , Geography , RNA, Ribosomal, 16S/genetics , Reverse Transcriptase Polymerase Chain Reaction , Salinity , Spatial Analysis , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...