Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Food Chem ; 451: 139409, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38692236

ABSTRACT

Herein, nineteen buckwheat honey samples collected from 19 stations of different ecological zones of Kazakhstan were analysed for their pollen density, physicochemical properties, chemical composition, antioxidant, anticholinesterase, tyrosinase inhibitory, and urease inhibitory activities with chemometric approaches. Twelve phenolic compounds and fumaric acid were identified using HPLC-DAD, and mainly fumaric, p-hydroxybenzoic, p-coumaric, trans-2-hydroxy cinnamic acids, and chrysin were detected in all samples. The honey samples collected from the Northern zone exhibited best antioxidant activity in lipid peroxidation inhibitory (IC50:8.65 ± 0.50 mg/mL), DPPH• (IC50:17.07 ± 1.49 mg/mL), ABTS•+ (IC50:8.90 ± 0.65 mg/mL), CUPRAC (A0.50:7.51 ± 0.30 mg/mL) and metal chelating assay (IC50:10.39 ± 0.71 mg/mL). In contrast, South-eastern zone samples indicated better acetylcholinesterase (55.57 ± 0.83%), butyrylcholinesterase (49.59 ± 1.09%), tyrosinase (44.40 ± 1.21%), and moderate urease (24.57 ± 0.33%) inhibitory activities at 20 mg/mL. The chemometric classification of nineteen buckwheat honey was performed using PCA and HCA techniques. Both were supported by correlation analysis. Thirteen compounds contributed significantly to the clustering of buckwheat honey based on geographical origin.


Subject(s)
Antioxidants , Fagopyrum , Honey , Honey/analysis , Honey/classification , Fagopyrum/chemistry , Fagopyrum/classification , Antioxidants/chemistry , Antioxidants/analysis , Kazakhstan , Monophenol Monooxygenase/antagonists & inhibitors , Chemometrics , Phenols/analysis , Phenols/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/analysis
2.
Front Chem ; 11: 1158198, 2023.
Article in English | MEDLINE | ID: mdl-37234200

ABSTRACT

Introduction: Free radicals are reactive oxygen species that constantly circulate through the body and occur as a side effect of many reactions that take place in the human body. Under normal conditions, they are removed from the body by antioxidant processes. If these natural mechanisms are disrupted, radicals accumulate in excess and contribute to the development of many diseases. Methodology: Relevant recent information on oxidative stress, free radicals, reactive oxidative species, and natural and synthetic antioxidants was collected by researching electronic databases such as PubMed / Medline, Web of Science, and Science Direct. Results: According to the analysed studies, this comprehensive review provided a recent update on oxidative stress, free radicals and antioxidants and their impact on the pathophysiology of human diseases. Discussion: To counteract the condition of oxidative stress, synthetic antioxidants must be provided from external sources to supplement the antioxidant defense mechanism internally. Because of their therapeutic potential and natural origin, medicinal plants have been reported as the main source of natural antioxidants phytocompounds. Some non-enzymatic phytocompounds such as flavonoids, polyphenols, and glutathione, along with some vitamins have been reported to possess strong antioxidant activities in vivo and in vitro studies. Thus, the present review describes, in brief, the overview of oxidative stress-directed cellular damage and the unction of dietary antioxidants in the management of different diseases. The therapeutic limitations in correlating the antioxidant activity of foods to human health were also discussed.

3.
Molecules ; 27(24)2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36557956

ABSTRACT

Rapeseed (Brassica napus L.) is a herbaceous annual plant of the Cruciferous family, the Cabbage genus. This oilseed crop is widely used in many areas of industry and agriculture. High-quality oil obtained from rapeseed can be found in many industrial food products. To date, extracts with a high content of biologically active substances are obtained from rapeseed using modern extraction methods. Brassica napus L. seeds contain polyunsaturated and monounsaturated fatty acids, carotenoids, phytosterols, flavonoids, vitamins, glucosinolates and microelements. The data in this review show that rapeseed biocompounds have therapeutic effects in the treatment of various types of diseases. Some studies indicate that rapeseed can be used as an anti-inflammatory, antioxidant, antiviral, hypoglycemic and anticancer agent. In the pharmaceutical industry, using rapeseed as an active ingredient may help to develop new forms drugs with wide range of therapeutic effects. This review focuses on aspects of the extraction of biocompounds from rapeseed and the study of its pharmacological properties.


Subject(s)
Brassica napus , Brassica rapa , Brassica , Fatty Acids, Monounsaturated , Seeds
4.
J Pers Med ; 12(9)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36143299

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease characterized by a tangle-shaped accumulation of beta-amyloid peptide fragments and Tau protein in brain neurons. The pathophysiological mechanism involves the presence of Aß-amyloid peptide, Tau protein, oxidative stress, and an exacerbated neuro-inflammatory response. This review aims to offer an updated compendium of the most recent and promising advances in AD treatment through the administration of phytochemicals. The literature survey was carried out by electronic search in the following specialized databases PubMed/Medline, Embase, TRIP database, Google Scholar, Wiley, and Web of Science regarding published works that included molecular mechanisms and signaling pathways targeted by phytochemicals in various experimental models of Alzheimer's disease in vitro and in vivo. The results of the studies showed that the use of phytochemicals against AD has gained relevance due to their antioxidant, anti-neuroinflammatory, anti-amyloid, and anti-hyperphosphorylation properties of Tau protein. Some bioactive compounds from plants have been shown to have the ability to prevent and stop the progression of Alzheimer's.

5.
Chin Med ; 17(1): 100, 2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36028892

ABSTRACT

Propolis, a resinous substance produced by honeybees from various plant sources, has been used for thousands of years in traditional medicine for several purposes all over the world. The precise composition of propolis varies according to plant source, seasons harvesting, geography, type of bee flora, climate changes, and honeybee species at the site of collection. This apiary product has broad clinical applications such as antioxidant, anti-inflammatory, antimicrobial, anticancer, analgesic, antidepressant, and anxiolytic as well asimmunomodulatory effects. It is also well known from traditional uses in treating purulent disorders, improving the wound healing, and alleviating many of the related discomforts. Even if its use was already widespread since ancient times, after the First and Second World War, it has grown even more as well as the studies to identify its chemical and pharmacological features, allowing to discriminate the qualities of propolis in terms of the chemical profile and relative biological activity based on the geographic place of origin. Recently, several in vitro and in vivo studies have been carried out and new insights into the pharmaceutical prospects of this bee product in the management of different disorders, have been highlighted. Specifically, the available literature confirms the efficacy of propolis and its bioactive compounds in the reduction of cancer progression, inhibition of bacterial and viral infections as well as mitigation of parasitic-related symptoms, paving the way to the use of propolis as an alternative approach to improve the human health. However, a more conscious use of propolis in terms of standardized extracts as well as new clinical studies are needed to substantiate these health claims.

6.
Int J Nanomedicine ; 17: 3619-3632, 2022.
Article in English | MEDLINE | ID: mdl-35996526

ABSTRACT

Human immunodeficiency virus (HIV) is one of the leading causes of death worldwide, with African countries being the worst affected by this deadly virus. Curcumin (CUR) is a Curcuma longa-derived polyphenol that has attracted the attention of researchers due to its antimicrobial, anti-inflammatory, antioxidant, immunomodulatory and antiviral effects. CUR also demonstrates anti-HIV effects by acting as a possible inhibitor of gp120 binding, integrase, protease, and topoisomerase II activities, besides also exerting a protective action against HIV-associated diseases. However, its effectiveness is limited due to its poor water solubility, rapid metabolism, and systemic elimination. Nanoformulations have been shown to be useful to enhance curcumin's bioavailability and its effectiveness as an anti-HIV agent. In this sense, bioactive effects of CUR in HIV infection are carefully reviewed, along with the most effective isolation techniques and type of nanoformulations available.


Subject(s)
Curcumin , HIV Infections , Anti-Inflammatory Agents , Antioxidants/pharmacology , Biological Availability , Curcumin/pharmacology , HIV Infections/drug therapy , Humans
7.
Oxid Med Cell Longev ; 2022: 8615242, 2022.
Article in English | MEDLINE | ID: mdl-35509838

ABSTRACT

Bergapten (BP) or 5-methoxypsoralen (5-MOP) is a furocoumarin compound mainly found in bergamot essential oil but also in other citrus essential oils and grapefruit juice. This compound presents antibacterial, anti-inflammatory, hypolipemic, and anticancer effects and is successfully used as a photosensitizing agent. The present review focuses on the research evidence related to the therapeutic properties of bergapten collected in recent years. Many preclinical and in vitro studies have been evidenced the therapeutic action of BP; however, few clinical trials have been carried out to evaluate its efficacy. These clinical trials with BP are mainly focused on patients suffering from skin disorders such as psoriasis or vitiligo. In these trials, the administration of BP (oral or topical) combined with UV irradiation induces relevant lesion clearance rates. In addition, beneficial effects of bergamot extract were also observed in patients with altered serum lipid profiles and in people with nonalcoholic fatty liver. On the contrary, there are no clinical trials that investigate the possible effects on cancer. Although the bioavailability of BP is lower than that of its 8-methoxypsoralen (8-MOP) isomer, it has fewer side effects allowing higher concentrations to be administered. In conclusion, although the use of BP has therapeutic applications on skin disorders as a sensitizing agent and as components of bergamot extract as hypolipemic therapy, more trials are necessary to define the doses and treatment guidelines and its usefulness against other pathologies such as cancer or bacterial infections.


Subject(s)
Methoxsalen , Oils, Volatile , 5-Methoxypsoralen , Humans , Methoxsalen/adverse effects , Photosensitizing Agents , Plant Extracts , Ultraviolet Rays
8.
Oxid Med Cell Longev ; 2021: 9068850, 2021.
Article in English | MEDLINE | ID: mdl-34754365

ABSTRACT

Hepatocellular carcinoma (HCC) is due to poor prognosis and lack of availability of effective treatment. Novel therapeutic strategies will be the fine tuning of intracellular ROS signaling to effectively deprive cells of ROS-induced tumor-promoting events. This review discusses the generation of ROS, the major signaling their modulation in therapeutics. We explore some of the major pathways involved in HCC, which include the VEGF, MAPK/ERK, mTOR, FGF, and Ser/Thr kinase pathways. In this review, we study cornerstone on natural bioactive compounds with their effect on hepatocarcinomas. Furthermore, we focus on oxidative stress and FDA-approved signaling pathway inhibitors, along with chemotherapy and radiotherapy enhancers which with early evidence of success. While more in vivo testing is required to confirm the findings presented here, our findings will aid future nonclinical, preclinical, and clinical studies with these compounds, as well as inspire medicinal chemistry scientists to conduct appropriate research on this promising natural compound and their derivatives.


Subject(s)
Antineoplastic Agents/pharmacology , Biological Products/pharmacology , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Reactive Oxygen Species/metabolism , Animals , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology
9.
Molecules ; 26(18)2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34577053

ABSTRACT

Alzheimer's disease (AD) is a severe neurodegenerative disorder of different brain regions accompanied by distresses and affecting more than 25 million people in the world. This progressive brain deterioration affects the central nervous system and has negative impacts on a patient's daily activities such as memory impairment. The most important challenge concerning AD is the development of new drugs for long-term treatment or prevention, with lesser side effects and greater efficiency as cholinesterases inhibitors and the ability to remove amyloid-beta(Aß) deposits and other related AD neuropathologies. Natural sources provide promising alternatives to synthetic cholinesterase inhibitors and many have been reported for alkaloids while neglecting other classes with potential cholinesterase inhibition. This review summarizes information about the therapeutic potential of small natural molecules from medicinal herbs, belonging to terpenoids, coumarins, and phenolic compounds, and others, which have gained special attention due to their specific modes of action and their advantages of low toxicity and high efficiency in the treatment of AD. Some show superior drug-like features in comparison to synthetic cholinesterase inhibitors. We expect that the listed phytoconstituents in this review will serve as promising tools and chemical scaffolds for the discovery of new potent therapeutic leads for the amelioration and treatment of Alzheimer's disease.


Subject(s)
Alkaloids , Cholinesterase Inhibitors
10.
Oxid Med Cell Longev ; 2021: 6492346, 2021.
Article in English | MEDLINE | ID: mdl-34531939

ABSTRACT

Coumarins belong to the benzopyrone family commonly found in many medicinal plants. Natural coumarins demonstrated a wide spectrum of pharmacological activities, including anti-inflammatory, anticoagulant, anticancer, antibacterial, antimalarial, casein kinase-2 (CK2) inhibitory, antifungal, antiviral, Alzheimer's disease inhibition, neuroprotective, anticonvulsant, phytoalexins, ulcerogenic, and antihypertensive. There are very few studies on the bioavailability of coumarins; therefore, further investigations are necessitated to study the bioavailability of different coumarins which already showed good biological activities in previous studies. On the evidence of varied pharmacological properties, the present work presents an overall review of the derivation, availability, and biological capacities of coumarins with further consideration of the essential mode of their therapeutic actions. In conclusion, a wide variety of coumarins are available, and their pharmacological activities are of current interest thanks to their synthetic accessibility and riches in medicinal plants. Coumarins perform the valuable function as therapeutic agents in a range of medical fields.


Subject(s)
Coumarins/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Bacteria/drug effects , Cell Movement/drug effects , Coumarins/chemistry , Coumarins/pharmacology , Coumarins/therapeutic use , Edema/chemically induced , Edema/drug therapy , Edema/pathology , Humans , Protective Agents/chemistry , Protective Agents/pharmacology , Protective Agents/therapeutic use
11.
Oxid Med Cell Longev ; 2021: 7571132, 2021.
Article in English | MEDLINE | ID: mdl-34349875

ABSTRACT

The Glycyrrhiza genus, generally well-known as licorice, is broadly used for food and medicinal purposes around the globe. The genus encompasses a rich pool of bioactive molecules including triterpene saponins (e.g., glycyrrhizin) and flavonoids (e.g., liquiritigenin, liquiritin). This genus is being increasingly exploited for its biological effects such as antioxidant, antibacterial, antifungal, anti-inflammatory, antiproliferative, and cytotoxic activities. The species Glycyrrhiza glabra L. and the compound glycyrrhizin (glycyrrhizic acid) have been studied immensely for their effect on humans. The efficacy of the compound has been reported to be significantly higher on viral hepatitis and immune deficiency syndrome. This review provides up-to-date data on the most widely investigated Glycyrrhiza species for food and medicinal purposes, with special emphasis on secondary metabolites' composition and bioactive effects.


Subject(s)
Anti-Inflammatory Agents/pharmacokinetics , Antioxidants/pharmacology , Glycyrrhiza/chemistry , Glycyrrhizic Acid/pharmacology , Immunologic Deficiency Syndromes/prevention & control , Inflammation/prevention & control , Phytochemicals/pharmacology , Animals , Humans , Immunologic Deficiency Syndromes/pathology , Inflammation/pathology
12.
Front Pharmacol ; 11: 571459, 2020.
Article in English | MEDLINE | ID: mdl-33192514

ABSTRACT

Analysis of the most relevant studies on the pharmacological properties and molecular mechanisms of psoralidin, a bioactive compound from the seeds of Cullen corylifolium (L.) Medik. confirmed its complex therapeutic potential. In the last years, the interest of the scientific community regarding psoralidin increased, especially after the discovery of its benefits in estrogen-related diseases and as a chemopreventive agent. Growing preclinical pieces of evidence indicate that psoralidin has anticancer, antiosteoporotic, anti-inflammatory, anti-vitiligo, antibacterial, antiviral, and antidepressant-like effects. Here, we provide a comprehensive and critical review of psoralidin on its bioavailability, pharmacological activities with focus on molecular mechanisms and cell signaling pathways. In this review, we conducted literature research on the PubMed database using the following keywords: "Psoralidin" or "therapeutic effects" or "biological activity" or "Cullen corylifolium" in order to identify relevant studies regarding PSO bioavailability and mechanisms of therapeutic effects in different diseases based on preclinical, experimental studies. In the light of psoralidin beneficial actions for human health, this paper gathers complete information on its pharmacotherapeutic effects and opens new natural therapeutic perspectives in chronic diseases.

13.
BMC Complement Med Ther ; 20(1): 241, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32738903

ABSTRACT

Several flavonoids have been recognized as nutraceuticals, and myricetin is a good example. Myricetin is commonly found in plants and their antimicrobial and antioxidant activities is well demonstrated. One of its beneficial biological effects is the neuroprotective activity, showing preclinical activities on Alzheimer, Parkinson, and Huntington diseases, and even in amyotrophic lateral sclerosis. Also, myricetin has revealed other biological activities, among them as antidiabetic, anticancer, immunomodulatory, cardiovascular, analgesic and antihypertensive. However, few clinical trials have been performed using myricetin as nutraceutical. Thus, this review provides new insights on myricetin preclinical pharmacological activities, and role in selected clinical trials.


Subject(s)
Dietary Supplements , Flavonoids/chemistry , Flavonoids/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Molecular Structure , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology
14.
Molecules ; 24(10)2019 May 17.
Article in English | MEDLINE | ID: mdl-31109023

ABSTRACT

This work is an updated snapshot of Lamium plants and their biological activities. The main features of the plant are described and the components of its essential oils are summarized. The traditional medicinal uses of Lamium plants has been reported. The presence of these chemicals i.e., hydroxycinnamic acids, iridoids, secoiridoids, flavonoids, anthocyanins, phenylpropanoids, phytoecdysteroids, benzoxazinoids, betaine can provide biological activities. After the discussion of antioxidant properties documented for Lamium plants, the biological activities, studied using in vitro models, antimicrobial, antiviral, anti-inflammatory, anti-nociceptive activity, and pain therapy and cytotoxicity and cytoprotective activity are here described and discussed. Finally, targeted examples of in vivo studies are reported.


Subject(s)
Lamiaceae/chemistry , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Humans , Medicine, Traditional , Pain Management , Plant Oils/chemistry , Plant Oils/pharmacology
15.
Phytochemistry ; 67(21): 2392-7, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16956629

ABSTRACT

Two bidesmosidic saponins were isolated from Climacoptera obtusifolia (Chenopodiaceae) and their structures were determined as gypsogenin 3-O-[beta-D-xylopyranosyl-(1-->3)-beta-D-glucopyranoside]-28-O-{beta-D-glucopyranosyl} ester (1) and hederagenin 3-O-[beta-D-xylopyranosyl-(1-->3)-beta-D-glucopyranoside]-28-O-[beta-D-glucopyranosyl} ester (2), by spectroscopic methods. Two known compounds, isorhamnetin 3-O-beta-D-glucopyranoside (3), and isorhamnetin 3-O-[alpha-L-rhamnopyranosyl-(1-->6)-beta-D-glucopyranoside (4) were also isolated for the first time from this plant. Compounds 1-4 were tested in various immunomodulatory assays. Compound 2 suppressed (92%) the reactive oxygen species (ROS) production on mononuclear cells in luminol-based chemiluminescence (CL) assay at a higher concentration (50 microg/mL). Compounds 3 and 4 demonstrated a strong inhibition on ROS production in the oxidative burst activity of whole blood, neutrophils, and mononuclear cells. Additionally compounds 3 and 4 also suppressed PHA T-cell proliferation with no cytotoxic effects.


Subject(s)
Chenopodiaceae/chemistry , Disaccharides/chemistry , Flavones/chemistry , Flavonoids/chemistry , Flavonols/chemistry , Saponins/chemistry , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Cell Line , Chenopodiaceae/metabolism , Disaccharides/pharmacology , Flavones/pharmacology , Flavonoids/pharmacology , Flavonols/pharmacology , Mice , Molecular Structure , Saponins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...