Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 38(9): 2928-2941, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35213159

ABSTRACT

Recent advances in using biological scaffolds for nanoparticle synthesis have proven to be useful for preparing various nanostructures with uniform shape and size. Proteins are significant scaffolds for generating various nanostructures partly because of the presence of many functional groups to recognize different chemistries. In this endeavor, cocosin protein, an 11S allergen, is prepared from coconut fruit and employed as a potential scaffold for synthesizing Mn3O4 materials. The interaction between protein and manganese ions is studied in detail through isothermal calorimetric titration. At increased scaffold availability, the Mn3O4 material adopts the exact hexamer structure of the cocosin protein. The electrochemical supercapacitive properties of the cocosin-Mn3O4 material are found to have a high specific capacitance of 751.3 F g-1 at 1 A g-1 with cyclic stability (92% of capacitance retention after 5000 CV cycles) in a three-electrode configuration. The Mn3O4//Mn3O4 symmetric supercapacitor device delivers a specific capacitance of 203.8 F g-1 at 1 A g-1 and an outstanding energy and power density of 91.7 W h kg-1 and 899.5 W kg-1, respectively. These results show that cocosin-Mn3O4 could be considered a suitable electrode for energy storage applications. Moreover, the cocosin protein to be utilized as a novel scaffold in protein-nanomaterial chemistry could be useful for protein-assisted inorganic nanostructure synthesis in the future.


Subject(s)
Manganese Compounds , Oxides , Electric Capacitance , Electrodes
2.
J Colloid Interface Sci ; 585: 505-518, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33139020

ABSTRACT

Electrochemical supercapacitor fabrication using heterogeneous nanocomposite is one of the most promising pathways for energy storage technology. Herein, heterostructure based nickel-molybdenum (NiO@Ni(OH)2-α-MoO3) nanocomposites have been successfully prepared on nickel foil via hydrothermal route for supercapacitor application. The mixed phases of cubic, hexagonal, and orthorhombic crystal structure for NiO, Ni(OH)2, and α-MoO3, respectively were observed by X-ray diffraction. Heterostructures of nanosheet and nanosphere morphologies were confirmed by high resolution transmission electron microscopy. Impressively, the NiO@Ni(OH)2-α-MoO3 composite working electrode exhibits a high specific capacitance of 445 Fg-1 at current density of 1 Ag-1 and shows outstanding rate capability (97.3% capacity retention after 3000 cycles at 10 Ag-1), compared to that of NiO@Ni(OH)2 nanoparticles. Notably, two-electrode symmetric supercapacitor of NiO@Ni(OH)2-α-MoO3 working electrode shows a high specific capacitance of 172 Fg-1 at 0.5 Ag-1, excellent rate capability and good cycling stability. Also, an excellent cycling stability (capacity retention of 98% after 5000 cycles) is observed for NiO@Ni(OH)2-α-MoO3 as a working electrode in the symmetric two-electrode system. The obtained attractive results demonstrate that nanocomposite anode material can be used for development of a wide-range of energy storage devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...