Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 304: 135268, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35690173

ABSTRACT

Slow-releasing precipitating tablets (SRPTs) and slow-releasing floating tablets (SRFTs) were formulated to release fumarate as a carbon source (CS) and/or electron donor (ED) in an in situ biological heterotrophic denitrification system. These tablets were prepared using pharmaceutical manufacturing. Soil column tests were conducted to evaluate nitrate denitrification efficacy, microbial population changes, and mass balance of fumarate and potential electron acceptors. Significant and simultaneous consumption of both fumarate and nitrate, and the production and consumption of nitrite were observed in both SRPT-treated and SRFT-treated soil columns. These results suggest that SRPT and SRFT releasing fumarate, induce heterotrophic biological denitrification. In the SRPT- and SRFT-treated columns, 65% and 73% of fumarate were associated with heterotrophic denitrification, respectively. Particularly, surplus citric acid, originally designed to serve as a floating agent, was utilized for 36% and 28% for SRFT flotation and denitrification, respectively. The results of 16s RNA analyses revealed that a bacterium that shared 99% 16s rRNA sequence similarity with those of Azoarcus sp. AN9, and Pseudogulbenkiania sp. NH8B, a facultative heterotrophic denitrifier, was detected in the column effluent. This study confirms that SRPT and SRFT can effectively operate long-term in situ biological denitrification processes, because it is possible to supply detailed CS and/or ED uniformly by applying both SRPT and SRFT in the well.


Subject(s)
Groundwater , Nitrates , Carbon , Denitrification , Fumarates , Heterotrophic Processes , Nitrogen , Organic Chemicals , RNA, Ribosomal, 16S , Soil , Tablets
2.
Chemosphere ; 260: 127478, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32683022

ABSTRACT

Slow-releasing carbon source tablets were manufactured for an in-situ biological denitrification system. The average zero-order nitrate degradation rates seen, from highest to lowest, were in microcosms to which lactate, fumarate, propionate, and formate had been added. Fumarate was approximately 80% cheaper than lactate, and consequently was determined to be the most optimal slow-releasing carbon source in tablet form. The slow-releasing precipitating tablet (SRPT) and slow-releasing floating tablet (SRFT) were manufactured with hydroxypropyl methylcellulose (HPMC) as the agent of release control, microcrystalline cellulose pH 101 (MCC 101) as the binder, #8 sand as the precipitation agent, and calcium carbonate and citric acid as floating agents. Fourier transform infrared spectroscopy and powder X-ray diffraction indicated that the crystal arrangement in the SRPTs and SRFTs was maintained and ordered in a manner similar to raw excipients. SRFTs floated in water within 30 min and remained so for 5 d due to the buoyancy of carbon dioxide. The carbon source release rate was proportional to the quantity of HPMC added. The longevities of SRPT with 300 mg of HPMC and SRFT with 400 mg of HPMC were 25.4 d and 37.3 d, respectively. This study observed that SRPT and SRFT were manufactured effectively and are suitable for in-situ slow-releasing biological systems.


Subject(s)
Denitrification , Groundwater/chemistry , Delayed-Action Preparations , Excipients/chemistry , Hypromellose Derivatives , Nitrates , Powders , Solubility , Tablets , Water/chemistry
3.
J Environ Manage ; 258: 110004, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31929050

ABSTRACT

This study assessed the feasibility of an in situ well-based denitrification bio-barrier (WDB) for managing groundwater contaminated with high-strength nitrate. To evaluate the efficacy of WDB using fumarate as a carbon source and/or electron donor, three sequential single-well push-pull tests (SWPPTs) were conducted at six test sites. The values of the isotope enrichment factor (ɛ) ranging from -6.5‰ to -22.6‰ and the detection and degradation of nitrite and nitrous oxide confirmed complete in situ denitrification of nitrate to nitrogen gas. The ratio of the first-order rate coefficient of fumarate to nitrate (k1,fum/k1,NO3) was obtained to estimate the amount and frequency of fumarate injection for the effective design of WDB. At three sites, the ratios ranged from 0.67 to 0.80, while the other two sites showed higher ratios of 2.97 and 2.20 than the theoretical values and significant amounts of sulfate reduction, theoretically equivalent to 6.5% of total fumarate consumption. Considering the theoretical mole ratio of fumarate to nitrate of 0.98, the amount and frequency of fumarate injection is site specific. During the operating WDB, the average annual nitrate mass degraded (95% CI) was 2.2 ± 1.0 kg N/yr/well. The amount of N reduced by one well of WDB is equivalent to treating 110 m3 of groundwater at 30 mg N/L to the level of 10 mg N/L for one year. WDB would be an effective remediation option for managing high nitrate flux in groundwater.


Subject(s)
Groundwater , Water Pollutants, Chemical , Carbon , Denitrification , Nitrates
4.
Article in English | MEDLINE | ID: mdl-30600760

ABSTRACT

This study demonstrates a combined field method accurately assessing the extent of trichloroethylene (TCE) reductive dechlorination activity and the mass fraction of its by-products. A combined method of injecting a known concentration of 1,1,2-trichloro-2-fluoroethene (TCFE) as a TCE bio-surrogate and a data processing technique of forced mass balance (FMB), considering the sorption effect on the mass fraction of chloroethene was evaluated by performing soil column and field bioaugmentation tests. In the soil column test, the FMB resulted in the mass fraction of 6% TCE, 48.3% cis-1,2-dichloroethene, 18.5% vinyl chloride and 27.2% ethylene. In the field bioaugmentation test, TCFE showed equivalent dechlorination pathways of TCE. The mass fractions estimated by FMB were very similar to those observed in the soil column bioaugmentation tests: 4.5% TCFE, 57.1% 1,2-dichloro-1-fluoroethene, 12% 1-chloro-1-fluoroethene and 26.4% fluoroethene (FE). The FMB method gave ∼50% higher mass fraction for more chlorinated ethenes (i.e., TCFE) and ∼10% lower mass fraction of less chlorinated ethenes (i.e., FE) than those considering only the aqueous concentrations of chlorofluoroethenes. A combined method of TCFE and FMB that could accurately estimate both the extent of dechlorination activities and mass distribution of TCE reductive dechlorination would be highly useful.


Subject(s)
Environmental Monitoring/methods , Groundwater/chemistry , Groundwater/microbiology , Trichloroethylene/analysis , Water Pollutants, Chemical/analysis , Water Wells , Biodegradation, Environmental , Chloroflexi/growth & development , Chloroflexi/metabolism , Models, Theoretical , Pilot Projects , Republic of Korea , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...