Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Physiol ; 601(24): 5795-5811, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37983193

ABSTRACT

Inspiratory tongue dilatory movement is believed to be mediated via changes in neural drive to genioglossus. However, this has not been studied during quiet breathing in humans. Therefore, this study investigated this relationship and its potential role in obstructive sleep apnoea (OSA). During awake supine quiet nasal breathing, inspiratory tongue dilatory movement, quantified with tagged magnetic resonance imaging, and inspiratory phasic genioglossus EMG normalised to maximum EMG were measured in nine controls [apnoea-hypopnea index (AHI) ≤5 events/h] and 37 people with untreated OSA (AHI >5 events/h). Measurements were obtained for 156 neuromuscular compartments (85%). Analysis was adjusted for nadir epiglottic pressure during inspiration. Only for 106 compartments (68%) was a larger anterior (dilatory) movement associated with a higher phasic EMG [mixed linear regression, beta = 0.089, 95% CI [0.000, 0.178], t(99) = 1.995, P = 0.049, hereafter EMG↗/mvt↗]. For the remaining 50 (32%) compartments, a larger dilatory movement was associated with a lower phasic EMG [mixed linear regression, beta = -0.123, 95% CI [-0.224, -0.022], t(43) = -2.458, P = 0.018, hereafter EMG↘/mvt↗]. OSA participants had a higher odds of having at least one decoupled EMG↘/mvt↗ compartment (binary logistic regression, odds ratio [95% CI]: 7.53 [1.19, 47.47] (P = 0.032). Dilatory tongue movement was minimal (>1 mm) in nearly all participants with only EMG↗/mvt↗ compartments (86%, 18/21). These results demonstrate that upper airway dilatory mechanics cannot be predicted from genioglossus EMG, particularly in people with OSA. Tongue movement associated with minimal genioglossus activity suggests co-activation of other airway dilator muscles. KEY POINTS: Inspiratory tongue movement is thought to be mediated through changes in genioglossus activity. However, it is unknown if this relationship is altered by obstructive sleep apnoea (OSA). During awake supine quiet nasal breathing, inspiratory tongue movement, quantified with tagged magnetic resonance imaging (MRI), and inspiratory phasic genioglossus EMG normalised to maximum EMG were measured in four tongue compartments of people with and without OSA. Larger tongue anterior (dilatory) movement was associated with higher phasic genioglossus EMG for 68% of compartments. OSA participants had an ∼7-times higher odds of having at least one compartment for which a larger anterior tongue movement was not associated with a higher phasic EMG than controls. Therefore, higher genioglossus phasic EMG does not consistently translate into tongue dilatory movement, particularly in people with OSA. Large dilatory tongue movements can occur despite minimal genioglossus inspiratory activity, suggesting co-activation of other pharyngeal muscles.


Subject(s)
Sleep Apnea, Obstructive , Wakefulness , Humans , Wakefulness/physiology , Pharyngeal Muscles , Movement/physiology , Tongue , Electromyography
2.
J Mech Behav Biomed Mater ; 138: 105638, 2023 02.
Article in English | MEDLINE | ID: mdl-36623403

ABSTRACT

INTRODUCTION: Knowledge of the nonlinear viscoelastic properties of the liver is important, but the complex tissue behavior outside the linear viscoelastic regime has impeded their characterization, particularly in vivo. Combining static compression with magnetic resonance (MR) elastography has the potential to be a useful imaging method for assessing large deformation mechanical properties of soft tissues in vivo. However, this remains to be verified. Therefore this study aims first to determine whether MR elastography can measure the nonlinear mechanical properties of ex vivo bovine liver tissue under varying levels of uniform and focal preloads (up to 30%), and second to compare MR elastography-derived complex shear modulus with standard rheological measurements. METHOD: Nine fresh bovine livers were collected from a local abattoir, and experiments were conducted within 12hr of death. Two cubic samples (∼10 × 10 × 10 cm3) were dissected from each liver and imaged using MR elastography (60 Hz) under 4 levels of uniform and focal preload (1, 10, 20, and 30% of sample width) to investigate the relationship between MR elastography-derived complex shear modulus (G∗) and the maximum principal Right Cauchy Green Strain (C11). Three tissue samples from each of the same 9 livers underwent oscillatory rheometry under the same 4 preloads (1, 10, 20, and 30% strain). MR elastography-derived complex shear modulus (G∗) from the uniform preload was validated against rheometry by fitting the frequency dependence of G∗ with a power-law and extrapolating rheometry-derived G∗ to 60 Hz. RESULTS: MR elastography-derived G∗ increased with increasing compressive large deformation strain, and followed a power-law curve (G∗ = 1.73 × C11-0.38, R2 = 0.96). Similarly, rheometry-derived G∗ at 1 Hz, increasing from 0.66 ± 1.03 kPa (1% strain) to 1.84 ± 1.65 kPa (30% strain, RM one-way ANOVA, P < 0.001), and the frequency dependence of G∗ followed a power-law with the exponent decreasing from 0.13 to 0.06 with increasing preload. MR elastography-derived G∗ was 1.4-3.1 times higher than the extrapolated rheometry-derived G∗ at 60 Hz, but the strain dependence was consistent between rheometry and MR elastography measurements. CONCLUSIONS: This study demonstrates that MR elastography can detect changes in ex vivo bovine liver complex shear modulus due to either uniform or focal preload and therefore can be a useful technique to characterize nonlinear viscoelastic properties of soft tissue, provided that strains applied to the tissue can be quantified. Although MR elastography could reliably characterize the strain dependence of the ex vivo bovine liver, MR elastography overestimated the complex shear modulus of the tissue compared to rheological measurements, particularly at lower preload (<10%). That is likely to be important in clinical hepatic MR elastography diagnosis studies if preload is not carefully considered. A limitation is the absence of overlapping frequency between rheometry and MR elastography for formal validation.


Subject(s)
Elasticity Imaging Techniques , Animals , Cattle , Elasticity Imaging Techniques/methods , Elasticity , Viscosity , Liver/diagnostic imaging , Rheology
3.
J Appl Physiol (1985) ; 132(2): 527-540, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34989652

ABSTRACT

Anatomical and imaging evidence suggests neural control of oblique and horizontal compartments of the genioglossus differs. However, neurophysiological evidence for differential control remains elusive. This study aimed to determine whether there are differences in neural drive to the oblique and horizontal regions of the genioglossus during swallowing and tongue protrusion. Adult participants (n = 63; 48 M) were recruited from a sleep clinic; 41 had obstructive sleep apnea (OSA: 34 M, 8 F). Electromyographic (EMG) was recorded at rest (awake, supine) using four intramuscular fine-wire electrodes inserted percutaneously into the anterior oblique, posterior oblique, anterior horizontal, and posterior horizontal genioglossus. Epiglottic pressure and nasal airflow were also measured. During swallowing, two distinct EMG patterns were observed - a monophasic response (single EMG peak) and a biphasic response (2 bursts of EMG). Peak EMG and timing of the peak relative to epiglottic pressure were significantly different between patterns (linear mixed models, P < 0.001). Monophasic activation was more likely in the horizontal than oblique region during swallowing (OR = 6.83, CI = 3.46-13.53, P < 0.001). In contrast, during tongue protrusion, activation patterns and EMG magnitude were not different between regions. There were no systematic differences in EMG patterns during swallowing or tongue protrusion between OSA and non-OSA groups. These findings provide evidence for functional differences in the motoneuronal output to the oblique and horizontal compartments, enabling differential task-specific drive. Given this, it is important to identify the compartment from which EMG is acquired. We propose that the EMG patterns during swallowing may be used to identify the compartment where a recording electrode is located.NEW & NOTEWORTHY During swallowing, we observed two distinct, stereotyped muscle activation patterns that define the horizontal (monophasic, maximal EMG) and oblique (biphasic, submaximal EMG) neuromuscular compartments of genioglossus. In contrast, volitional tongue protrusions produced uniform activation across compartments. This provides evidence for task-dependent, functionally discrete neuromuscular control of the oblique and horizontal compartments of genioglossus. The magnitude and temporal patterning of genioglossus EMG during swallowing may help guide electrode placement in tongue EMG studies.


Subject(s)
Sleep Apnea, Obstructive , Tongue , Adult , Electromyography , Facial Muscles , Humans , Tongue/physiology , Wakefulness
4.
Sleep ; 44(3)2021 03 12.
Article in English | MEDLINE | ID: mdl-32954420

ABSTRACT

STUDY OBJECTIVES: To characterize how mandibular advancement splint (MAS) alters inspiratory tongue movement in people with obstructive sleep apnea (OSA) during wakefulness and whether this is associated with MAS treatment outcome. METHODS: A total of 87 untreated OSA participants (20 women, apnea-hypopnea index (AHI) 7-102 events/h, aged 19-76 years) underwent a 3T MRI with a MAS in situ. Mid-sagittal tagged images quantified inspiratory tongue movement with the mandible in a neutral position and advanced to 70% of the maximum. Movement was quantified with harmonic phase methods. Treatment outcome was determined after at least 9 weeks of therapy. RESULTS: A total of 72 participants completed the study: 34 were responders (AHI < 5 or AHI ≤ 10events/h with >50% reduction in AHI), 9 were partial responders (>50% reduction in AHI but AHI > 10 events/h), and 29 nonresponders (change in AHI <50% and AHI ≥ 10 events/h). About 62% (45/72) of participants had minimal inspiratory tongue movement (<1 mm) in the neutral position, and this increased to 72% (52/72) after advancing the mandible. Mandibular advancement altered inspiratory tongue movement pattern for 40% (29/72) of participants. When tongue dilatory patterns altered with advancement, 80% (4/5) of those who changed to a counterproductive movement pattern (posterior movement >1 mm) were nonresponders and 71% (5/7) of those who changed to beneficial (anterior movement >1 mm) were partial or complete responders. CONCLUSIONS: The mandibular advancement action on upper airway dilator muscles differs between individuals. When mandibular advancement alters inspiratory tongue movement, therapeutic response to MAS therapy was more common among those who convert to a beneficial movement pattern.


Subject(s)
Mandibular Advancement , Sleep Apnea, Obstructive , Adult , Aged , Female , Humans , Middle Aged , Polysomnography , Sleep Apnea, Obstructive/therapy , Tongue/diagnostic imaging , Treatment Outcome , Wakefulness , Young Adult
5.
Biomech Model Mechanobiol ; 18(5): 1497-1505, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31055692

ABSTRACT

The aim of this study is to characterise the stiffness of white and grey matter in paediatric subjects using magnetic resonance elastography (MRE) and to determine whether these properties change throughout normal development. MRE was performed using a clinical 3T MRI scanner at three frequencies (30, 40 and 60 Hz) on 36 healthy paediatric subjects aged between 7 and 18 years (19 F) and 11 adults aged 23-44 years (6 F). Anatomical and diffusion tensor imaging was also collected. The stiffness quantified as the magnitude of the complex shear modulus (G*), fractional anisotropy (FA), mean diffusivity (MD) and volume of white and grey matter were calculated. One-way analysis of variance and Tukey's multiple comparison tests were used to compare data in age groups separated into children (7-12 years), adolescents (13-18 years) and adults (18+ years), and Spearman's correlations were performed for paediatric data. White and grey matter stiffness for each frequency and their frequency dependence was found to be very similar in paediatric and adult subjects (p > 0.05 all variables). No significant correlations were found when comparing G* with age, FA, MD or volume. Adult G*, FA, MD and volume values were within range of others reported in the literature. Paediatric white and grey matter stiffness values are similar to those of adults. We conclude that clinically, adult values can be used as a baseline measure in paediatric brain MRE.


Subject(s)
Brain/diagnostic imaging , Brain/physiology , Elasticity Imaging Techniques , Magnetic Resonance Imaging , Adolescent , Adult , Biomechanical Phenomena , Child , Female , Gray Matter/diagnostic imaging , Gray Matter/physiology , Humans , Male , White Matter/diagnostic imaging , White Matter/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...