Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Oncol ; 32(11): 1400-1409, 2021 11.
Article in English | MEDLINE | ID: mdl-34438040

ABSTRACT

BACKGROUND: Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous disease with respect to outcome. Features of the tumor microenvironment (TME) are associated with prognosis when assessed by gene expression profiling. However, it is uncertain whether assessment of the microenvironment can add prognostic information to the most relevant and clinically well-established molecular subgroups when analyzed by immunohistochemistry (IHC). PATIENTS AND METHODS: We carried out a histopathologic analysis of biomarkers related to TME in a very large cohort (n = 455) of DLBCL treated in prospective trials and correlated with clinicopathologic and molecular data, including chromosomal rearrangements and gene expression profiles for cell-of-origin and TME. RESULTS: The content of PD1+, FoxP3+ and CD8+, as well as vessel density, was not associated with outcome. However, we found a low content of CD68+ macrophages to be associated with inferior progression-free survival (PFS) and overall survival (OS; P = 0.023 and 0.040, respectively) at both univariable and multivariable analyses, adjusted for the factors of the International Prognostic Index (IPI), MYC break and BCL2/MYC and BCL6/MYC double-hit status. The subgroup of PDL1+ macrophages was not associated with survival. Instead, secreted protein acidic and cysteine rich (SPARC)-positive macrophages were identified as the subtype of macrophages most associated with survival. SPARC-positive macrophages and stromal cells directly correlated with favorable PFS and OS (both, P[log rank] <0.001, P[trend] < 0.001). The association of SPARC with prognosis was independent of the factors of the IPI, MYC double-/triple-hit status, Bcl2/c-myc double expression, cell-of-origin subtype and a recently published gene expression signature [lymphoma-associated macrophage interaction signature (LAMIS)]. CONCLUSIONS: SPARC expression in the TME detected by a single IHC staining with fair-to-good interobserver reproducibility is a powerful prognostic parameter. Thus SPARC expression is a strong candidate for risk assessment in DLBCL in daily practice.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Proto-Oncogene Proteins c-myc , Antineoplastic Combined Chemotherapy Protocols , Humans , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/genetics , Macrophages/metabolism , Osteonectin/therapeutic use , Prognosis , Prospective Studies , Proto-Oncogene Proteins c-bcl-2 , Proto-Oncogene Proteins c-bcl-6 , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Reproducibility of Results , Tumor Microenvironment/genetics
2.
Can J Physiol Pharmacol ; 79(3): 220-6, 2001 Mar.
Article in English | MEDLINE | ID: mdl-11294598

ABSTRACT

Red wine concentrate has been reported to inhibit the catalytic activity of human recombinant cytochrome P450 (CYP) 3A4. Wine contains many polyphenolic compounds, including trans-resveratrol, which is also available commercially as a nutraceutical product. In the present study, we examined the in vitro effect of trans-resveratrol on human CYP3A catalytic activity by employing recombinant CYP3A4 and CYP3A5 as model enzymes and 7-benzyloxy-4-trifluoromethylcoumarin (BFC) as a CYP3A substrate. Trans-resveratrol inhibited BFC O-dealkylation catalyzed by CYP3A4 and CYP3A5 in a concentration-dependent manner. In each case, the inhibition was noncompetitive, as determined by Lineweaver-Burk and Dixon plots of the enzyme kinetic data. The apparent Ki values (mean +/- SEM) for the inhibition by trans-resveratrol of BFC O-dealkylation catalyzed by CYP3A4 and CYP3A5 were 10.2+/-1.1 microM and 14.7+/-0.3 microM, respectively. Preincubation of trans-resveratrol with NADPH and CYP3A4 or CYP3A5 for 10 or 15 min prior to initiation of substrate oxidation did not enhance the inhibitory effect, suggesting that this compound was not a mechanism-based inactivator of CYP3A4 or CYP3A5 when BFC was used as the substrate. Overall, our study provides the first demonstration that trans-resveratrol inhibits, in vitro, a substrate oxidation reaction catalyzed by human recombinant CYP3A4 and CYP3A5.


Subject(s)
Coumarins/metabolism , Cytochrome P-450 Enzyme System/metabolism , Mixed Function Oxygenases/metabolism , Stilbenes/pharmacology , Catalysis , Cytochrome P-450 CYP3A , Cytochrome P-450 Enzyme Inhibitors , Dealkylation , Enzyme Inhibitors/pharmacology , Humans , Indicators and Reagents , Kinetics , Mixed Function Oxygenases/antagonists & inhibitors , Recombinant Proteins/metabolism , Resveratrol
SELECTION OF CITATIONS
SEARCH DETAIL
...