Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Phys Chem A ; 128(22): 4448-4455, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38780507

ABSTRACT

Trivalent praseodymium (Pr3+)-doped yttrium silicate (Y2SiO5) crystals have been widely used in various phosphors owing to their excellent luminescence characteristics. Although a series of studies have been carried out on its application prospects, the electronic structures and energy-transfer mechanisms of Pr3+-doped Y2SiO5 (Y2SiO5:Pr) remain an exploratory topic. Herein, the crystal structure analysis by the particle swarm optimization structure search method is used to study the structural evolution of Y2SiO5:Pr. Two novel structures with local [PrO7]-11 and [PrO6]-9 [Y2SiO5:Pr (I) and Y2SiO5:Pr (II)] are successfully identified. The impurity Pr3+ ions occupy the Y3+ sites and successfully integrate into the Y2SiO5 host crystal with a Pr3+ concentration of 6.25%. The calculated electronic band structures show that the doping of Pr3+ induces a reduction in band gaps for the host Y2SiO5 crystal. The conduction bands near the Fermi level are completely composed of f states. For the atomic energies of Pr3+ in Y2SiO5, the Stark levels and transitions are properly simulated based on a new set of crystal field parameters (CFPs) at the C1 site symmetry. A satisfactory r.m.s. dev. of 15.57 cm-1 with 9 free ion parameters (plus 27 fixed CFPs as obtained from ab initio calculation) fitted to the 33 observed levels is obtained for the first time. The plentiful energy-level transition lines, from the visible light to the near-infrared region, are deciphered for Pr3+ in Y2SiO5. Blue 3P0 → 3H4 at 465 nm is calculated to be a strong emission line, and it might be an ideal channel for laser actions. These results could not only provide important insights into the rare-earth-doped crystals but also lay the foundation for future research studies of designing the new laser materials.

2.
Phys Chem Chem Phys ; 25(37): 25273-25279, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37700723

ABSTRACT

Rare-earth thulium (Tm3+) doped yttrium oxide (Y2O3) host single crystals are promising "eye-safe" laser materials. However, the mechanisms of photoluminescence and energy transfer in Tm3+ doped Y2O3 crystals are not yet understood at the fundamental level. Here, we synthetize a series of Y2O3:Tm3+ samples by the sol-gel method. Our experimental results show that the most intensive absorption line of the 3H6 → 1D2 transition occurs at 358 nm, and the strongest emission line of the 1D2 → 3F4 transition is located at 453 nm, which are in good agreement with the calculations of 363 nm and 458 nm, respectively. By using the CALYPSO structural search method, the ground state structure of Y2O3:Tm3+ with P2 space group symmetry is uncovered. The complete energy levels, including free-ion LS terms and crystal-field LSJ multiplet manifolds, of Y2O3:Tm3+ are obtained based on our developed WEPMD method. The present findings show that our WEPMD method can be used in experiments to elucidate the underlying mechanisms of photoluminescence and energy transfer in Tm3+ doped Y2O3 crystals, which offer insights for further understanding of other rare-earth doped laser materials.

3.
Phys Chem Chem Phys ; 23(32): 17420-17429, 2021 Aug 28.
Article in English | MEDLINE | ID: mdl-34352058

ABSTRACT

Bismuth dopants have attracted intensive studies experimentally for their extremely broad near-infrared luminescence. Here we performed first-principles calculations to investigate the site occupancy and valence state by taking the condition of synthesis into consideration, and then calculated the excited states and various transitions of the bismuth ions by focusing on the targeted valent state Bi+ in a variety of ternary chloride MXCl3 (M = K, Rb, Cs; X = Mg, Cd) hosts. The results on formation energies and charge transition levels show that vacant defects play an important role in the charge compensation for the bismuth dopants, and a lower chemical potential of chlorine benefits the stabilization of Bi+ at monovalent M sites. The multi-configurational quantum-chemical method and the constrained occupancy approach together confirm the near-infrared photoluminescence of Bi+, and the spontaneous emission rates due to electric-dipole and magnetic-dipole contributions are evaluated and analyzed in terms of transition selection rules, to affirm the Bi+ nature of the long lifetime luminescence. Our results show that the mechanisms revealed in this study, and the combination of density-functional calculations for defect formation energies with the wave-function based calculations for optical transitions, are effective in exploring the luminescence of bismuth dopants in solids.

4.
Inorg Chem ; 60(7): 4434-4446, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33735577

ABSTRACT

Bismuth ion-doped phosphate crystals have shown rich luminescence phenomena. However, the complexity and variety of Bi3+-related transitions bring great challenges to the understanding of the underlying mechanisms, rendering it hard to rationally design new phosphors and optimize their performance. In this work, we perform first-principles calculations based on the generalized gradient approximation of density functional to obtain the excited state equilibrium geometric structures and then calculate the electronic structures for various Bi3+-related excited states in phosphates RPO4:Bi3+ (R = Y, Lu, La) by utilizing the hybrid density functional method. The experimentally measured excitation and emission features are well interpreted by our theoretical calculations. Specifically, we reveal that the emission in LaPO4:Bi3+ is of charge transfer nature, whereas the dominant emission in YPO4:Bi3+ or LuPO4:Bi3+ is the characteristic A band emission. Trapped holes above the valence band maximum due to intrinsic defects are deemed to play a role in the charge-transfer emission of LaPO4. Our calculations show that the excited state of the Bi3+ pair in YPO4 or LuPO4 is (Bi3+-Bi3+)*, rather than Bi2+-Bi4+. Such a Bi3+ pair contributes to the longer wavelength emission. Furthermore, our calculations on charge transition levels show that Bi3+ ions can act as electron and hole traps in RPO4 (R = Y, Lu, La). Our work indicates that first-principles calculations can be useful in exploring the diverse luminescence processes in Bi3+-doped inorganic insulators.

5.
Inorg Chem ; 2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33739095

ABSTRACT

Trivalent praseodymium (Pr3+)-doped materials have been extensively used in high-resolution laser spectroscopy, owing to their outstanding conversion efficiencies of plentiful transitions in the visible laser region. However, to clarify the microstructure and energy transfer mechanism of Pr3+-doped host crystals is a challenging topic. In this work, the stable structures of Pr3+-doped yttrium orthoaluminate (YAlO3) have been widely searched based on the CALYPSO method. A novel monoclinic structure with the Pm group symmetry is successfully identified. The Pr3+ impurity can precisely occupy the Y3+ position and get incorporated into the YAlO3 (YAP) host crystal with a Pr3+ concentration of 6.25%. The result of the electronic band structure reveals a 3.62 eV band gap, which suggests a semiconductor character of YAP:Pr. Using our developed well-established parametrization matrix diagonalization (WEPMD) method, we have systematically analyzed the energy level scheme and proposed a set of newly improved parameters. Additionally, the energy transfer mechanism of YAP:Pr is clarified by deciphering the numerical electric dipole and magnetic dipole transitions. The popular red emission at 653 nm is assigned to the transition 3P0 → 3F2, while the transition 3P0 → 3H4 with a large branching ratio is predicted to be a good laser channel. Many promising emission lines for laser actions are also obtained in the visible light region. Our results not only provide important insights into the energy transfer mechanisms of rare-earth ion-doped materials but also pave the way for the implementation of new types of laser devices.

6.
Phys Chem Chem Phys ; 22(37): 21074-21082, 2020 Sep 30.
Article in English | MEDLINE | ID: mdl-32940295

ABSTRACT

Neodymium ion (Nd3+)-doped yttrium lithium fluoride (LiYF4, YLF) laser crystals have shown significant prospects as excellent laser materials in many kinds of solid-state laser systems. However, the origins of the detailed information of their local structure and luminescence evolution are still poorly understood. Herein, we use an unbiased CALYPSO structure searching technique and density functional theory to study the local structure of Nd3+-doped YLF. Our results reveal a new stable phase with the P4[combining macron] (No. 81) space group for Nd3+-doped YLF, indicating that the host Y3+ ion site was naturally occupied by the Nd3+ ion impurity. On the basis of our newly developed WEPMD method, we adopt a specific type of orthogonal correlation crystal field to obtain a new set of crystal-field parameters as well as 182 complete Stark energy levels. Many absorption and emission lines for Nd3+-doped YLF are calculated and discussed based on Judd-Ofelt theory, and our results indicate that some of the observed absorption and emission lines are perfectly reproduced by our theoretical calculations. Additionally, we predict several promising transition lines in the visible and near-infrared spectral regions, including the electronic dipole emission lines 4F5/2 → 4I9/2 at 808 nm and 2H9/2 → 4I9/2 at 799 nm, as well as the magnetic dipole emission lines 4F3/2(27) → 4I11/2(6) at 1047 nm and 4F3/2(27) → 4I11/2(8) at 1052 nm. These transition channels indicate that Nd3+-doped YLF laser crystals have greatly promising laser actions for serving as a solid-state laser material.

7.
Inorg Chem ; 59(2): 1211-1217, 2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31814395

ABSTRACT

The absorption and emission transitions of Tm3+-doped LiYF4 have been extensively investigated due to the excellent properties and enormous applications of these materials as laser materials. However, the challenging issues regarding the local structure and luminescence mechanism have not been conclusively established to date. To address these challenges, the CALYPSO structure search method is employed, and the results first reveal the ground-state structure of Tm3+-doped LiYF4, which crystallizes in the space group P4̅ (No. 81) of the tetragonal system. The Y3+ ions are replaced by Tm3+ ions, forming a local configuration of [TmF8]5-. Furthermore, the complete Stark energy levels of Tm3+-doped LiYF4 are predicted by using our newly developed WEPMD method, which provides preliminary preparation for further spectral exploration. Judd-Ofelt analysis is performed to evaluate the electric dipole transition intensities. Two prominent transitions, 3H5 → 3H6 (1223 nm) and 3H4 → 3H6 (801 nm), are predicted to be good candidates for near-infrared lasers. This study not only is useful for determining the luminescence properties of Tm3+-doped LiYF4 but also offers an effective way to search for other rare-earth-doped lasing crystals for the future design of lasing materials.

8.
ACS Appl Mater Interfaces ; 11(11): 10745-10750, 2019 Mar 20.
Article in English | MEDLINE | ID: mdl-30789696

ABSTRACT

There has been considerable research interest paid to rare-earth transition-metal-doped Y3Al5O12, which has great potential for application as a laser crystal of new-type laser devices because of its unique optoelectronic and photophysical properties. Here, we present new research conducted on the structural evolution and crystal-field characteristics of a rare-earth Nd-doped Y3Al5O12 laser crystal by using the CALYPSO structure search method and our newly developed WEPMD method. A novel cage-like structure with a Nd3+ concentration of 4.16% is uncovered, which belongs to the standardized C222 space group. Our results indicate that the impurity Nd3+ ions are likely to substitute the Y3+ at the central site of the host Y3Al5O12 crystal lattice. The laser emission 4F3/2 → 4I11/2 occurring at 1077 nm is in accord with that of the experimental data. By introducing the proper correlation crystal field, three transitions, 4G5/2 → 4I9/2, 4F7/2 → 4I9/2, and 4S3/2 → 4I9/2, are predicted to be good candidates for laser action. These findings can provide powerful guidelines for further experiments of rare-earth-metal-doped laser crystals.

9.
Inorg Chem ; 58(2): 1058-1066, 2019 Jan 22.
Article in English | MEDLINE | ID: mdl-30216052

ABSTRACT

Thulium-doped yttrium aluminum garnet (Tm:YAG) is an important solid-state laser crystal. The energy-level splitting within it is still an unresolved problem. Here, we perform a theoretical study on the microstructure of Tm3+-doped YAG using the CALYPSO structure search method in conjunction with first-principles calculations. The calculated results show that the 4.16% doping concentration of Tm3+ impurity causes an obvious structural distortion of YAG crystal, forming an orthorhombic phase in C222 symmetry. On the basis of our developed WEPMD method, we obtain a new and complete set of free-ion and crystal field parameters by a good fit (with proper irreducible representations) to 69 observed energy levels and determine the exact energy-level splitting of Tm3+ in YAG. The calculated Stark levels and electric dipole transitions are in excellent agreement with the measured data and similar theoretical calculations. Some promising emission lines between 3F3, 3F2, 1D2, and 1I6 states are presented. These findings offer fundamental insights and practical tools for further exploration of the structural and electronic properties of other transition-metal-doped YAG crystal.

10.
Inorg Chem ; 57(8): 4563-4570, 2018 Apr 16.
Article in English | MEDLINE | ID: mdl-29582999

ABSTRACT

Due to its unusual optical properties, neodymium ion (Nd3+)-doped bismuth silicate (Bi4Si3O12, BSO) is widely used for its excellent medium laser amplification in physics, chemistry, biomedicine, and other research fields. Although the spectral transitions and luminescent mechanisms of Nd3+-doped BSO have been investigated experimentally, theoretical research is severely limited due to the lack of detailed information about the microstructure and the doping site of Nd3+-doped BSO, as well as the electric and magnetic dipole transition mechanisms. Herein, we systematically study the microstructure and doping site of Nd3+-doped BSO using an unbiased CALYPSO structure search method in conjunction with first-principles calculations. The result indicates that the Nd3+ ion impurity occupies the host Bi3+ ion site with trigonal symmetry, forming a unique semiconducting phase. Based on our newly developed WEPMD method, the electric dipole and magnetic dipole transition lines, including a large number of absorption and emission lines, in the region of visible and near-infrared spectra of Nd3+-doped BSO are calculated. It is found that the 4G5/2 → 4I9/2, 2H9/2 → 4I9/2, and 4F3/2 → 4I11/2 channels are promising laser actions of Nd3+-doped BSO. These findings indicate that Nd3+-doped BSO crystals can serve as a promising multifunctional material for optical laser devices.

11.
ACS Appl Mater Interfaces ; 8(44): 30422-30429, 2016 Nov 09.
Article in English | MEDLINE | ID: mdl-27734663

ABSTRACT

The recent renaissance of the use of rare-earth-doped yttrium orthoaluminate as an ideal laser material has generated significant interest; however, the unique structural features underlying many of its outstanding optical properties still require elucidation. To solve this intriguing problem, we performed a systematic first-principles study; the results of the study reveal a new stable phase for Tm3+-doped YAlO3 (YAP), of monoclinic Pm symmetry, with an 80-atom per unit cell. An unbiased CALYPSO structure search indicates that the Tm3+ impurity ion tends to substitute the position of Y3+ in the YAP crystal lattice. Electronic band structure calculations reveal that the insulated behaviors of YAP are significantly eliminated after doping the impure Tm3+ ions, as evidenced by the minor energy gap of about 0.4 eV, which is close to the band gap energy of a 2 µm emitter source. On the basis of our developed crystal-field theory method, the 4f12 electronic structures and energies of Tm3+ ions in the YAP crystal are calculated. The theoretical results indicate that the electric-dipole-induced transition 3H4 → 3H5 is mainly responsible for producing the light wave at approximately 2.3 µm. The present results provide an essential understanding of the rare-earth-ion-doped lasing materials and serve as a practical tool for further exploration of such materials.

12.
J Phys Chem A ; 118(38): 8745-52, 2014 Sep 25.
Article in English | MEDLINE | ID: mdl-25171085

ABSTRACT

Some features of the interaction of the 4f(N) configuration of tripositive lanthanide ions (Ln(3+)) with excited configurations have been investigated. The calculated barycenter energies of the same parity 4f(N-1)6p, 4f(N+1)5p(5), and 4f(N-1)5f configurations for Ln(3+), relative to those of 4f(N), are fitted well by exponential functions. The 4f(N) barycenter energies of Ln(3+) in Y3Al5O12/Ln(3+) lie in the band gap, with the exceptions of Tb(3+) and Yb(3+), where they are situated in the conduction and valence bands, respectively. The configuration interaction parameters α, ß, and γ, which are fitted in the usual phenomenological Hamiltonian to calculate the crystal field energies of Ln(3+), exhibit quite variable magnitudes in the literature due to incomplete energy level data sets, energy level misassignments and fitting errors. For LaCl3/Ln(3+), 83% of the variation of α and 50% of that for ß can be explained by the change in the difference in barycenter energy with the predominant interacting configuration. The parameter γ is strongly correlated with the Slater parameter F(2) and is not well-determined in most calculations. The values of the electrostatically correlated spin-other orbit parameter P(2) vary smoothly across the Ln(3+) series with the barycenter difference between the 4f(N) and 4f(N-1)5f configurations. Calculations of the P(k) (k = 2, 4, and 6) values for Pr(3+) show that 4f → nf excitations only account for ∼65% of the value of P(2) for LaCl3/Pr(3+) and 35% of that in Y3Al5O12/Pr(3+). The role of the ligand is therefore important in determining the value, and a discussion is included of the present state of configuration-interaction-assisted crystal field calculations. Further progress cannot be made in the above areas until more reliable and complete energy level data sets are available for the Ln(3+) series of ions in crystals.

SELECTION OF CITATIONS
SEARCH DETAIL
...