Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 43(34): 6021-6034, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37527923

ABSTRACT

Activation of the primary motor cortex (M1) is important for the execution of skilled movements and motor learning, and its dysfunction contributes to the pathophysiology of Parkinson's disease (PD). A well-accepted idea in PD research, albeit not tested experimentally, is that the loss of midbrain dopamine leads to decreased activation of M1 by the motor thalamus. Here, we report that midbrain dopamine loss altered motor thalamus input in a laminar- and cell type-specific fashion and induced laminar-specific changes in intracortical synaptic transmission. Frequency-dependent changes in synaptic dynamics were also observed. Our results demonstrate that loss of midbrain dopaminergic neurons alters thalamocortical activation of M1 in both male and female mice, and provide novel insights into circuit mechanisms for motor cortex dysfunction in a mouse model of PD.SIGNIFICANCE STATEMENT Loss of midbrain dopamine neurons increases inhibition from the basal ganglia to the motor thalamus, suggesting that it may ultimately lead to reduced activation of primary motor cortex (M1). In contrast with this line of thinking, analysis of M1 activity in patients and animal models of Parkinson's disease report hyperactivation of this region. Our results are the first report that midbrain dopamine loss alters the input-output function of M1 through laminar and cell type specific effects. These findings support and expand on the idea that loss of midbrain dopamine reduces motor cortex activation and provide experimental evidence that reconciles reduced thalamocortical input with reports of altered activation of motor cortex in patients with Parkinson's disease.


Subject(s)
Parkinson Disease , Male , Mice , Female , Animals , Dopamine/metabolism , Basal Ganglia , Movement , Thalamus , Disease Models, Animal
2.
Front Integr Neurosci ; 15: 810331, 2021.
Article in English | MEDLINE | ID: mdl-35153689

ABSTRACT

There has been increased cognizance of gender inequity and the importance of an inclusive and diverse approach to scientific research in recent years. However, the innovative work of women scientists is still undervalued based on reports of fewer women in leadership positions, limited citations of research spearheaded by women, reduced federal grant awards, and lack of recognition. Women have been involved in trailblazing work that paved the way for contemporary scientific inquiry. The strides made in current neuroscience include contributions from women who deserve more recognition. In this review, we discuss the work of four women whose groundbreaking scientific work has made ineffaceable marks in the neuroscience field. These women are pioneers of research and innovators and, in addition, contribute to positive change that bolsters the academic community and society. This article celebrates these women scientists, their substantial impacts in neuroscience, and the positive influence of their work on advancing society and culture.

SELECTION OF CITATIONS
SEARCH DETAIL
...