Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 7618, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38030610

ABSTRACT

The evolutionary transition to self-compatibility facilitates polyploid speciation. In Arabidopsis relatives, the self-incompatibility system is characterized by epigenetic dominance modifiers, among which small RNAs suppress the expression of a recessive SCR/SP11 haplogroup. Although the contribution of dominance to polyploid self-compatibility is speculated, little functional evidence has been reported. Here we employ transgenic techniques to the allotetraploid plant A. kamchatica. We find that when the dominant SCR-B is repaired by removing a transposable element insertion, self-incompatibility is restored. This suggests that SCR was responsible for the evolution of self-compatibility. By contrast, the reconstruction of recessive SCR-D cannot restore self-incompatibility. These data indicate that the insertion in SCR-B conferred dominant self-compatibility to A. kamchatica. Dominant self-compatibility supports the prediction that dominant mutations increasing selfing rate can pass through Haldane's sieve against recessive mutations. The dominance regulation between subgenomes inherited from progenitors contrasts with previous studies on novel epigenetic mutations at polyploidization termed genome shock.


Subject(s)
Arabidopsis , Self-Incompatibility in Flowering Plants , Arabidopsis/genetics , Plants , Polyploidy , Self-Incompatibility in Flowering Plants/genetics
2.
Plant Cell Physiol ; 59(2): 376-391, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29272531

ABSTRACT

In several eudicot species, one copy of each member of the WUSCHEL-RELATED HOMEOBOX (WOX) gene family, WOX1 and WOX3, is redundantly or differentially involved in lateral leaf outgrowth, whereas only the WOX3 gene regulating the lateral domain of leaf development has been reported in grass. In this study, we show that a WOX3 gene, LEAF LATERAL SYMMETRY1 (LSY1), regulates lateral leaf development in a different manner ftom that of other duplicated paralogs of WOX3, NARROW LEAF2 (NAL2)/NAL3, in rice. A loss-of-function mutant of LSY1 exhibited an asymmetrical defect from early leaf development, which is different from a symmetric defect in a double loss-of-function mutant of NAL2/3, whereas the expression of both genes was observed in a similar domain in the margins of leaf primordia. Unlike NAL2/3, overexpression of LSY1 produced malformed leaves whose margins were curled adaxially. Expression domains and the level of adaxial/abaxial marker genes were affected in the LSY1-overexpressing plants, indicating that LSY1 is involved in regulation of adaxial-abaxial patterning at the margins of the leaf primordia. Additive phenotypes in some leaf traits of lsy1 nal2/3 triple mutants and the unchanged level of NAL2/3 expression in the lsy1 background suggested that LSY1 regulates lateral leaf development independently of NAL2/3. Our results indicated that all of the rice WOX3 genes are involved in leaf lateral outgrowth, but the functions of LSY1 and NAL2/3 have diverged. We propose that the function of WOX3 and the regulatory mode of leaf development in rice are comparable with those of WOX1/WOX3 in eudicot species.


Subject(s)
Multigene Family , Organogenesis/genetics , Oryza/genetics , Oryza/metabolism , Plant Proteins/metabolism , Sequence Homology, Amino Acid , Base Sequence , Gene Expression Regulation, Plant , Genes, Plant , Models, Biological , Phenotype , Plant Leaves/cytology , Plant Leaves/metabolism , Plant Proteins/genetics , Plants, Genetically Modified , Reproduction
3.
J Plant Res ; 131(2): 349-358, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29032409

ABSTRACT

Polyploidization has played an important role in the speciation and diversification of plant species. However, genetic analyses of polyploids are challenging because the vast majority of the model species are diploids. The allotetraploid Arabidopsis kamchatica, which originated through the hybridization of the diploid Arabidopsis halleri and Arabidopsis lyrata, is an emerging model system for studying various aspects of polyploidy. However, a transgenic method that allows the insertion of a gene of interest into A. kamchatica is still lacking. In this study, we investigated the early development of pistils in A. kamchatica and confirmed the formation of open pistils in young flower buds (stages 8-9), which is important for allowing Agrobacterium to access female reproductive tissues. We established a simple Agrobacterium-mediated floral dip transformation method to transform a gene of interest into A. kamchatica by dipping A. kamchatica inflorescences bearing many young flower buds into a 5% sucrose solution containing 0.05% Silwet L-77 and Agrobacterium harboring the gene of interest. We showed that a screenable marker comprising fluorescence-accumulating seed technology with green fluorescent protein was useful for screening the transgenic seeds of two accessions of A. kamchatica subsp. kamchatica and an accession of A. kamchatica subsp. kawasakiana.


Subject(s)
Agrobacterium/physiology , Arabidopsis/growth & development , Flowers/growth & development , Genomics/methods , Polyploidy , Arabidopsis/genetics , Flowers/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Transformation, Genetic
4.
PLoS Genet ; 8(7): e1002838, 2012.
Article in English | MEDLINE | ID: mdl-22844253

ABSTRACT

The evolutionary transition from outcrossing to self-fertilization (selfing) through the loss of self-incompatibility (SI) is one of the most prevalent events in flowering plants, and its genetic basis has been a major focus in evolutionary biology. In the Brassicaceae, the SI system consists of male and female specificity genes at the S-locus and of genes involved in the female downstream signaling pathway. During recent decades, much attention has been paid in particular to clarifying the genes responsible for the loss of SI. Here, we investigated the pattern of polymorphism and functionality of the female specificity gene, the S-locus receptor kinase (SRK), in allotetraploid Arabidopsis kamchatica. While its parental species, A. lyrata and A. halleri, are reported to be diploid and mainly self-incompatible, A. kamchatica is self-compatible. We identified five highly diverged SRK haplogroups, found their disomic inheritance and, for the first time in a wild allotetraploid species, surveyed the geographic distribution of SRK at the two homeologous S-loci across the species range. We found intact full-length SRK sequences in many accessions. Through interspecific crosses with the self-incompatible and diploid congener A. halleri, we found that the female components of the SI system, including SRK and the female downstream signaling pathway, are still functional in these accessions. Given the tight linkage and very rare recombination of the male and female components on the S-locus, this result suggests that the degradation of male components was responsible for the loss of SI in A. kamchatica. Recent extensive studies in multiple Brassicaceae species demonstrate that the loss of SI is often derived from mutations in the male component in wild populations, in contrast to cultivated populations. This is consistent with theoretical predictions that mutations disabling male specificity are expected to be more strongly selected than mutations disabling female specificity, or the female downstream signaling pathway.


Subject(s)
Arabidopsis , Fertilization , Plant Proteins/genetics , Protein Kinases/genetics , Self-Incompatibility in Flowering Plants/genetics , Arabidopsis/genetics , Arabidopsis/physiology , Crosses, Genetic , Diploidy , Fertilization/genetics , Fertilization/physiology , Mutation , Plant Proteins/physiology , Polymorphism, Genetic , Protein Kinases/physiology , Self-Incompatibility in Flowering Plants/physiology , Signal Transduction , Tetraploidy
SELECTION OF CITATIONS
SEARCH DETAIL
...