Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Bioact Mater ; 37: 407-423, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38689660

ABSTRACT

Traditional optical waveguides or mediums are often silica-based materials, but their applications in biomedicine and healthcare are limited due to the poor biocompatibility and unsuitable mechanical properties. In term of the applications in human body, a biocompatible hydrogel system with excellent optical transparency and mechanical flexibility could be beneficial. In this review, we explore the different designs of hydrogel-based optical waveguides derived from natural and synthetic sources. We highlighted key developments such as light emitting contact lenses, implantable optical fibres, biosensing systems, luminating and fluorescent materials. Finally, we expand further on the challenges and perspectives for hydrogel waveguides to achieve clinical applications.

2.
Int J Biol Macromol ; 271(Pt 1): 132349, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38782320

ABSTRACT

Stem cell transplantation provides a promising approach for addressing inflammation and functional disorders. Nonetheless, the viability of these transplanted cells diminishes significantly within pathological environments, limiting their therapeutic potential. Moreover, the non-invasive tracking of these cells in vivo remains a considerable challenge, hampering the assessment of their therapeutic efficacy. Transition-metal oxide nanocrystals, known for their unique "enzyme-like" catalytic property and imaging capability, provide a new avenue for clinical application. In this study, the lignin as a biocompatible macromolecule was modified with poly (ethylene glycol) through chain-transfer polymerization, and then it was utilized to incorporate superparamagnetic iron oxide and cerium oxide nanocrystals creating a functional nanozyme. The iron oxide nanocrystals self-assembled into the hydrophobic core of nano system, while the in-situ mineralization of cerium oxide particles was carried out with the assistance of peripheral phenolic hydroxyl groups. The product, cerium­iron core-shell nanozyme, enabled effective stem cells labeling through endocytosis and exhibited catalase and superoxide dismutase activities within the cells. As a result, it could scavenge highly destructive hydroxyl radicals and peroxyl radicals, shielding stem cells from apoptosis in inflammatory environment and maintaining their differentiation ability. Additionally, when these functionalized stem cells were administered to mice with acute inflammation, not only did they alleviate disease symptoms, but they also allowed for the visualization using T2-weighted magnetic resonance imaging. This innovative therapeutic approach provides a new strategy for combatting diseases.


Subject(s)
Apoptosis , Cerium , Inflammation , Lignin , Magnetic Resonance Imaging , Cerium/chemistry , Cerium/pharmacology , Animals , Lignin/chemistry , Lignin/pharmacology , Apoptosis/drug effects , Magnetic Resonance Imaging/methods , Mice , Stem Cell Transplantation/methods , Iron/chemistry , Humans , Nanoparticles/chemistry , Stem Cells/cytology , Stem Cells/drug effects
3.
Nanoscale ; 16(7): 3269-3292, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38265441

ABSTRACT

Presently, the rapid depletion of resources and drastic climate change highlight the importance of sustainable development. In this case, nanochitin derived from chitin, the second most abundant renewable polymer in the world, possesses numerous advantages, including toughness, easy processability and biodegradability. Furthermore, it exhibits better dispersibility in various solvents and higher reactivity than chitin owing to its increased surface area to volume ratio. Additionally, it is the only natural polysaccharide that contains nitrogen. Therefore, it is valuable to further develop this innovative technology. This review summarizes the recent developments in nanochitin and specifically identifies sustainable strategies for its preparation. Additionally, the different biomass sources that can be exploited for the extraction of nanochitin are highlighted. More importantly, the life cycle assessment of nanochitin preparation is discussed, followed by its applications in advanced manufacturing and perspectives on the valorization of chitin waste.

4.
Chem Asian J ; 17(20): e202200628, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-35977910

ABSTRACT

Supramolecular hydrogels have attracted considerable interest due to their unique stimuli-responsive and self-healing properties. However, these hydrogel systems are usually achieved by covalent grafting of supramolecular units onto the polymer backbone, which in turn limits their reprocessability. Herein, we prepared a supramolecular hydrogel system by forming dynamic covalent crosslinks between 4-carboxyphenylboronic acid (CPBA) and polyvinyl alcohol (PVA). The system was then further crosslinked with either calcium ions or branched polyethylenimine (PEI) to generate hydrogels with distinctly different properties. Incorporation of calcium ions resulted in the formation of hydrogels with higher storage modulus of 7290 Pa but without self-healing properties. On the other hand, PEI-crosslinked hydrogel (PVA-CPBA-PEI) exhibited >2000% critical strain value, demonstrated high stability over 52 days and showed sustained antibacterial effect. A combination of supramolecular interactions and dynamic covalent crosslinks can be an alternate strategy to fabricate next-generation hydrogel materials.


Subject(s)
Hydrogels , Polyvinyl Alcohol , Polymers , Polyethyleneimine , Calcium , Anti-Bacterial Agents
5.
J Nanobiotechnology ; 20(1): 327, 2022 Jul 16.
Article in English | MEDLINE | ID: mdl-35842720

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is common musculoskeletal disorders associated with overgeneration of free radicals, and it causes joint pain, inflammation, and cartilage degradation. Lignin as a natural antioxidant biopolymer has shown its great potential for biomedical applications. In this work, we developed a series of lignin-based nanofibers as antioxidative scaffolds for cartilage tissue engineering. RESULTS: The nanofibers were engineered by grafting poly(lactic acid) (PLA) into lignin via ring-opening polymerization and followed by electrospinning. Varying the lignin content in the system was able to adjust the physiochemical properties of the resulting nanofibers, including fiber diameters, mechanical and viscoelastic properties, and antioxidant activity. In vitro study demonstrated that the PLA-lignin nanofibers could protect bone marrow-derived mesenchymal stem/stromal cells (BMSCs) from oxidative stress and promote the chondrogenic differentiation. Moreover, the animal study showed that the lignin nanofibers could promote cartilage regeneration and repair cartilage defects within 6 weeks of implantation. CONCLUSION: Our study indicated that lignin-based nanofibers could serve as an antioxidant tissue engineering scaffold and facilitate the cartilage regrowth for OA treatment.


Subject(s)
Nanofibers , Osteoarthritis , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Biocompatible Materials/metabolism , Biocompatible Materials/pharmacology , Cartilage/metabolism , Cell Differentiation , Lignin/metabolism , Lignin/pharmacology , Nanofibers/chemistry , Nanofibers/therapeutic use , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Polyesters/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry
6.
RSC Adv ; 11(5): 2682-2692, 2021 Jan 11.
Article in English | MEDLINE | ID: mdl-35424216

ABSTRACT

Large amounts of spent coffee grounds (SCGs) are often discarded and there is a need to find alternative disposal methods due to environmental concerns. This project aims to develop sustainable materials by re-purposing spent coffee grounds (SCGs). Oil extraction was performed using different organic solvents and yielded approximately 10% coffee oil. Coffee oil contains potentially useful chemical compounds such as fatty acids and caffeine. They also exhibited antioxidant properties. Extracted SCGs (ESCGs) were blended with epoxy resin to form composites. ESCG composites displayed a general decrease in mechanical properties relative to epoxy. However, improvements were observed when comparing ESCG composites and SCG composites. The greatest improvement belongs to epoxy composite filled with acetone-ESCGs, where the tensile strength, flexural modulus and flexural strength increased to 23.4 MPa, 3.02 GPa and 42.9 MPa respectively. This study presents a way to exploit waste materials which contributes to the goal of sustainability.

7.
View (Beijing) ; 1(2): e16, 2020 Jun.
Article in English | MEDLINE | ID: mdl-34766164

ABSTRACT

Viral epidemics develop from the emergence of new variants of infectious viruses. The lack of effective antiviral treatments for the new viral infections coupled with rapid community spread of the infection often result in major human and financial loss. Viral transmissions can occur via close human-to-human contact or via contacting a contaminated surface. Thus, careful disinfection or sanitization is essential to curtail viral spread. A myriad of disinfectants/sanitizing agents/biocidal agents are available that can inactivate viruses, but their effectiveness is dependent upon many factors such as concentration of agent, reaction time, temperature, and organic load. In this work, we review common commercially available disinfectants agents available on the market and evaluate their effectiveness under various application conditions. In addition, this work also seeks to debunk common myths about viral inactivation and highlight new exciting advances in the development of potential sanitizing agents.

SELECTION OF CITATIONS
SEARCH DETAIL
...