Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ultrason Sonochem ; 44: 146-151, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29680597

ABSTRACT

The influence of ultrasonication treatment on the catalytic performance of CuY zeolite catalysts was investigated for the liquid-phase oxidative carbonylation of methanol to dimethyl carbonate (DMC). The deammoniation method of NH4Y into HY zeolites was optimized and characterized by elemental analyzer, derivative thermogravimetry, Brunauer-Emmett-Teller (BET) analyzer, and powder X-ray diffractometry, revealing that the HY zeolite deammoniated at 400 °C presented the highest surface area, complete ammonium/proton ion exchange, and no structure collapse, rendering it the best support from all the prepared zeolites. CuY zeolites were prepared via aqueous phase ion exchange with the aid of ultrasonication. Upon ultrasonication, the Cu+ active centers were uniformly dispersed in the Y zeolites, penetrating the core of the zeolite particles in a very short time. In addition to enhancing the Cu dispersity, the ultrasonication treatment influenced the BET surface area, acid amount, Cu+/Cu2+ ratio, and also had a relatively small impact on the Cu loading. Consequently, adequate exposure to ultrasonication was able to increase the conversion rate of methanol into dimethyl carbonate up to 11.4% with a comparable DMC selectivity of 23.7%. This methanol conversion is 2.65 times higher than that obtained without the ultrasonication treatment.

2.
J Nanosci Nanotechnol ; 13(4): 2703-7, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23763147

ABSTRACT

Tetraethylenepentamine (TEPA) embedded zeolite A crystals were synthesized by using TEPA and the preformed zeolite A precursor under the microwave irradiation. The presence of TEPA in zeolite A crystal was confirmed by TG analysis and FTIR, Raman spectra. The CO2 adsorptive behavior of TEPA embedded zeolite A samples was investigated by CO2 isotherms measured at 25 degrees C comparing with zeolite A. The optimum CO2 sorption capacity was found in the case of 7.5% TEPA embedded zeolite A, which showed 3.75 mmol g(-1) where as the zeolite A showed less CO2 adsorption capacity of 2.88 mmol g(-1). The adsorption capacity of TEPA embedded Zeolite A was sustained up to 90% during 4 cycles of temperature swing adsorption (TSA) from 40 degrees C to 140 degrees C, indicating that the TEPA embedded Zeolite A was found to be useful as one of the application to solid amine adsorbent for CO2.

3.
Environ Sci Technol ; 42(8): 2736-41, 2008 Apr 15.
Article in English | MEDLINE | ID: mdl-18497116

ABSTRACT

To improve their CO2 absorption capacity, alkali-based sorbents prepared by impregnation and wet mixing method of potassium carbonate on supports such as activated carbon and MgO (KACI30, KACP30, KMgI30, and KMgP30), were investigated in a fixed bed reactor (C02 absorption at 50-100 degrees C and regeneration at 150-400 degrees C). Total CO2 capture capacities of KMgI30-500 and KMgP30-500 were 178.6 and 197.6 mg CO2/g sorbent, respectively, in the presence of 11 vol % H2O even at 50 degrees C. The large amount of CO2 capture capacity of KMgP30-500 and KMgI30-500 could be explained by the fact that MgO itself, as well as K2CO3, could absorb CO2 in the presence of water vapor even at low temperatures. In particular, water vapor plays an important role in the CO2 absorption of MgO and KMgI30-500 even at low temperatures below 60 degrees C, in marked contrast to MgO and CaO which can absorb CO2 at high temperatures. The CO2 capture capacity of the KMgI30-300 sorbent, however, was less than that of KMgI30-500 due to the formation of Mg(OH)2 which did not absorb CO2. MgO based-sorbents promoted with K2CO3 after CO2 absorption formed new structures such as K2Mg(CO3)2 and K2Mg(CO3)2 x 4(H2O), unlike KACI30 which showed only the KHCO3 crystal structure. The new Mg-based sorbents promoted with K2CO3 showed excellent characteristics in that it could satisfy a large amount of CO2 absorption at low temperatures, a high CO2 absorption rate, and fast and complete regeneration.


Subject(s)
Carbon Dioxide/chemistry , Carbon/chemistry , Carbonates/chemistry , Magnesium Oxide/chemistry , Potassium/chemistry , Adsorption , Temperature , X-Ray Diffraction
4.
Chemosphere ; 69(5): 712-8, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17604081

ABSTRACT

CO(2) capture from flue gas using a sodium-based solid sorbent was investigated in a bubbling fluidized-bed reactor. Carbonation and regeneration temperature on CO(2) removal was determined. The extent of the chemical reactivity after carbonation or regeneration was characterized via (13)C NMR. In addition, the physical properties of the sorbent such as pore size, pore volume, and surface area after carbonation or regeneration were measured by gas adsorption method (BET). With water vapor pretreatment, near complete CO(2) removal was initially achieved and maintained for about 1-2min at 50 degrees C with 2s gas residence time, while without proper water vapor pretreatment CO(2) removal abruptly decreased from the beginning. Carbonation was effective at the lower temperature over the 50-70 degrees C temperature range, while regeneration more effective at the higher temperature over the 135-300 degrees C temperature range. To maintain the initial 90% CO(2) removal, it would be necessary to keep the regeneration temperature higher than about 135 degrees C. The results obtained in this study can be used as basic data for designing and operating a large scale CO(2) capture process with two fluidized-bed reactors.


Subject(s)
Air Pollutants/isolation & purification , Air , Carbon Dioxide/isolation & purification , Carbonates/chemistry , Waste Management , Water/chemistry , Adsorption , Air/analysis , Air/standards , Time Factors , Volatilization , Waste Management/instrumentation , Waste Management/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...