Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 12(3): 3494-3501, 2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31859476

ABSTRACT

Nonflammable solid-state electrolytes can potentially address the reliability and energy density limitations of lithium-ion batteries. Garnet-structured oxides such as Li7La3Zr2O12 (LLZO) are some of the most promising candidates for solid-state devices. Here, three-dimensional (3D) solid-state LLZO frameworks with low tortuosity pore channels are proposed as scaffolds, into which active materials and other components can be infiltrated to make composite electrodes for solid-state batteries. To make the scaffolds, we employed aqueous freeze tape casting (FTC), a scalable and environmentally friendly method to produce porous LLZO structures. Using synchrotron radiation hard X-ray microcomputed tomography, we confirmed that LLZO films with porosities of up to 75% were successfully fabricated from slurries with a relatively wide concentration range. The acicular pore size and shape at different depths of scaffolds were quantified by fitting the pore shapes with ellipses, determining the long and short axes and their ratios, and investigating the equivalent diameter distribution. The results show that relatively homogeneous pore sizes and shapes were sustained over a long range along the thickness of the scaffold. Additionally, these pores had low tortuosity and the wall thickness distributions were found to be highly homogeneous. These are desirable characteristics for 3D solid electrolytes for composite electrodes, in terms of both the ease of active material infiltration and also minimization of Li diffusion distances in electrodes. The advantages of the FTC scaffolds are demonstrated by the improved conductivity of LLZO scaffolds infiltrated with poly(ethylene oxide)/lithium bis(trifluoromethanesulfonyl)imide (PEO/LITFSI) compared to those of PEO/LiTFSI films alone or composites containing LLZO particles.

2.
Nano Lett ; 19(7): 4731-4737, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31246032

ABSTRACT

Rational design of sulfur electrodes is exceptionally important in enabling a high-performance lithium/sulfur cell. Constructing a continuous pore structure of the sulfur electrode that enables facile lithium ion transport into the electrode and mitigates the reconstruction of sulfur is a key factor for enhancing the electrochemical performance. Here, we report a three-dimensionally (3D) aligned sulfur electrode cast onto conventional aluminum foil by directional freeze tape casting. The 3D aligned sulfur-graphene oxide (S-GO) electrode consisting of few micron thick S-GO layers with 10-20 µm interlayer spacings demonstrates significant improvement in the performance of the Li/S cell. Moreover, the freeze tape cast graphene oxide electrode exhibits homogeneous reconfiguration behavior in the polysulfide catholyte cell tests and demonstrated extended cycling capability with only 4% decay of the specific capacity over 200 cycles. This work emphasizes the critical importance of proper structural design for sulfur-carbonaceous composite electrodes.

3.
Chemistry ; 24(1): 274-280, 2018 Jan 02.
Article in English | MEDLINE | ID: mdl-29053171

ABSTRACT

High surface area materials are of considerable interest for gas storage/capture, molecular sieving, catalyst supports, as well as for slow-release drug-delivery systems. We report here a very simple and fast route to very high surface area, mechanically robust, hydrophobic polymer gels prepared by fluoride-catalyzed hydrolysis of mixtures of MeSi(OEt)3 and bis-triethoxysilylethane (BTSE) at room temperature. These materials offer specific surface areas up to 1300 m2 g-1 , peak pore sizes of 0.8 nm and thermal stabilities above 200 °C. The gelation times and surface areas can be controlled by adjusting the solvent volume (dichloromethane), percent fluoride (as nBu4 NF or TBAF) and the BTSE contents. Polymers with other corners and linkers were also explored. These materials will further expand the materials databank for use in vacuum insulation panels and as thermally stable release and capture media.

4.
Phys Chem Chem Phys ; 19(19): 11778-11785, 2017 May 17.
Article in English | MEDLINE | ID: mdl-28435967

ABSTRACT

Fully dense Y2Mo3O12/Al composites were prepared by squeeze-casting. Relatively mild conditions of 750 °C/20 min/50 MPa were used in order to avoid reaction of the components. SEM, Raman spectroscopy, XRD and dilatometry were used to characterize the microstructures and morphologies of the composites. Zero thermal expansion was achieved in the temperature range where the thermal mismatch strain was zero. We show that the CTE mismatch of Al and Y2Mo3O12 results in compressive and tensile strains that distort the Y2Mo3O12 lattice. We establish a novel method to measure the negative thermal expansion (NTE) materials' CTE under strain by measuring the composites' CTE and calculating the thermal mismatch strain between the NTE ceramic and the metal matrix. The relationship between thermal strain and Raman shift is established and measured and the simulated results are in good agreement. We also find Y2Mo3O12 to have a positive CTE when the surface strain is ≥0.80 × 10-2%.

5.
Chemistry ; 22(7): 2257-60, 2016 Feb 12.
Article in English | MEDLINE | ID: mdl-26699804

ABSTRACT

Fumed silica is produced in 1000 tons per year quantities by combusting SiCl4 in H2 /O2 flames. Given that both SiCl4 and combustion byproduct HCl are corrosive, toxic and polluting, this route to fumed silica requires extensive safeguards that may be obviated if an alternate route were found. Silica, including rice hull ash (RHA) can be directly depolymerized using hindered diols to generate distillable spirocyclic alkoxysilanes or Si(OEt)4 . We report here the use of liquid-feed flame spray pyrolysis (LF-FSP) to combust the aforementioned precursors to produce fumed silica very similar to SiCl4 -derived products. The resulting powders are amorphous, necked, <50 nm average particle sizes, with specific surface areas (SSAs) of 140-230 m(2) g(-1) . The LF-FSP approach does not require the containment constraints of the SiCl4 process and given that the RHA silica source is produced in million ton per year quantities worldwide, the reported approach represents a sustainable, green and potentially lower-cost alternative.

SELECTION OF CITATIONS
SEARCH DETAIL
...