Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Mol Cancer ; 23(1): 141, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982480

ABSTRACT

BACKGROUND: The aberrant expression of phosphofructokinase-platelet (PFKP) plays a crucial role in the development of various human cancers by modifying diverse biological functions. However, the precise molecular mechanisms underlying the role of PFKP in head and neck squamous cell carcinoma (HNSCC) are not fully elucidated. METHODS: We assessed the expression levels of PFKP and c-Myc in tumor and adjacent normal tissues from 120 HNSCC patients. A series of in vitro and in vivo experiments were performed to explore the impact of the feedback loop between PFKP and c-Myc on HNSCC progression. Additionally, we explored the therapeutic effects of targeting PFKP and c-Myc in HNSCC using Patient-Derived Organoids (PDO), Cell Line-Derived Xenografts, and Patients-Derived Xenografts. RESULTS: Our findings indicated that PFKP is frequently upregulated in HNSCC tissues and cell lines, correlating with poor prognosis. Our in vitro and in vivo experiments demonstrate that elevated PFKP facilitates cell proliferation, angiogenesis, and metastasis in HNSCC. Mechanistically, PFKP increases the ERK-mediated stability of c-Myc, thereby driving progression of HNSCC. Moreover, c-Myc stimulates PFKP expression at the transcriptional level, thus forming a positive feedback loop between PFKP and c-Myc. Additionally, our multiple models demonstrate that co-targeting PFKP and c-Myc triggers synergistic anti-tumor effects in HNSCC. CONCLUSION: Our study demonstrates the critical role of the PFKP/c-Myc positive feedback loop in driving HNSCC progression and suggests that simultaneously targeting PFKP and c-Myc may be a novel and effective therapeutic strategy for HNSCC.


Subject(s)
Disease Progression , Feedback, Physiological , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms , Proto-Oncogene Proteins c-myc , Squamous Cell Carcinoma of Head and Neck , Humans , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/genetics , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Animals , Mice , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/genetics , Cell Line, Tumor , Phosphofructokinase-1, Type C/metabolism , Phosphofructokinase-1, Type C/genetics , Cell Proliferation , Prognosis , Female , Male , Xenograft Model Antitumor Assays , Biomarkers, Tumor/metabolism
2.
Heliyon ; 9(6): e16576, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37484429

ABSTRACT

[This corrects the article DOI: 10.1016/j.heliyon.2023.e14958.].

3.
Heliyon ; 9(4): e14958, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37025806

ABSTRACT

Background: Head and neck squamous cell carcinoma (HNSCC) is a prevalent disease that has a low survival rate and high recurrence risk. Our study aims to investigate the expression and role of SEC11A in HNSCC. Methods: The expression of SEC11A was assessed in 18 pairs of cancerous and adjacent tissues by qRT-PCR and western blotting. Immunohistochemistry was performed in clinical specimen sections to evaluate the expression of SEC11A and its association with outcomes. Furthermore, the functional role of SEC11A in HNSCC tumor proliferation and progression was investigated using the in vitro cell model with lentivirus-mediated SEC11A knockdown. Colony formation and CCK8 assays were conducted to assess cell proliferation potential, while in vitro migration and invasion were examined using wound healing and transwell assays. To determine the tumor formation potential in vivo, a tumor xenograft assay was used. Results: In contrast to adjacent normal tissues, SEC11A expression was significantly elevated in HNSCC tissues. SEC11A was mainly localized in the cytoplasm, and its expression was significantly associated with patient prognosis. SEC11A was silenced using shRNA lentivirus in TU212 and TU686 cell lines, and the gene knockdown was confirmed. A series of functional assays demonstrated that SEC11A knockdown reduced cell proliferation, migration and invasion ability in vitro. In addition, the xenograft assay demonstrated that SEC11A knockdown significantly inhibited tumor growth in vivo. Tumor tissue sections of mice showed decreased proliferation potential in the shSEC11A xenografts cells by immunohistochemistry. Conclusion: SEC11A knockdown decreased cell proliferation, migration and invasion in vitro and subcutaneous tumorigenesis in vivo. SEC11A is crucial to HNSCC proliferation and progression, and may serve as a new therapeutic target.

4.
Cancer Med ; 12(5): 5703-5717, 2023 03.
Article in English | MEDLINE | ID: mdl-36217758

ABSTRACT

BACKGROUND: As one of the most devastating cancers, head and neck squamous cell carcinoma (HNSCC) has a short survival time and poor prognosis. Pescadillo ribosomal biogenesis factor 1 (PES1) plays a critical role in the progression of numerous cancers. However, its role and underlying mechanisms in HNSCC remain unclear. METHODS: A variety of bioinformatic approaches were used to identify the expressions, prognostic and diagnostic value of PES1 in HNSCC. qRT-PCR, immunofluorescence (IF) assay, western blotting and immunohistochemical (IHC) were used to evaluate the expression of PES1 in HNSCC cell lines and clinical tissues. PES1 was knocked down in TU177 and FaDu cells which have high PES1 expression. The effects of PES1 on cell proliferation and tumour growth in HNSCC were elevated by colony formation, CCK8 assays and tumorigenicity assay in nude mice. The effects on cisplatin (CDDP) sensitivity upon silencing of PES1 were assessed using a patient-derived xenograft (PDX) model. RESULTS: PES1 expression was an independent prognostic factor for HNSCC and negatively associated with the overall survival rate. Silencing of PES1 reduces HNSCC cell proliferation and tumour growth. Moreover, PES1 inhibition significantly sensitises HNSCC cells to cisplatin. Furthermore, we found a PES1 has a high correlation with c-Myc and plays an essential role in the tumour immune microenvironment. CONCLUSION: Our findings suggest that PES1 is associated with tumour growth and drug resistance and served as a potential cancer marker for diagnosis and a putative therapeutic target for HNSCC.


Subject(s)
Cisplatin , Head and Neck Neoplasms , Animals , Mice , Humans , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/genetics , Cisplatin/pharmacology , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/genetics , Mice, Nude , Prognosis , Cell Proliferation , Cell Line, Tumor , Tumor Microenvironment , RNA-Binding Proteins
5.
Theranostics ; 12(17): 7431-7449, 2022.
Article in English | MEDLINE | ID: mdl-36438491

ABSTRACT

Background: Laryngeal squamous cell carcinoma (LSCC) is one of the most common malignant tumors of the head and neck, and it has shown increasing incidence and mortality. The mechanistic target of rapamycin complex 1 (mTORC1) is frequently dysregulated in LSCC, but its underlying mechanisms remain unclear. Methods: Establishment of a novel LSCC cell line using primary LSCC tumor tissues with dysregulated mTORC1 activity and then stable knockdown of Raptor (an mTORC1 specific component) in this cell line. Transcriptomic sequencing, quantitative real-time PCR, western blot analysis, and immunofluorescence assays were used to identify the crucial downstream effector of mTORC1. A series of experiments were conducted to investigate the functions and underlying mechanisms of the mTORC1 target gene in LSCC progression. Clinical LSCC samples were used to evaluate the association of mTORC1 and its downstream targets with clinicopathological features and patient prognosis. Finally, the influence on cisplatin (CDDP) sensitivity upon depletion of the mTORC1 target gene was assessed using a cell culture system, a cell line-derived xenograft (CDX) model, and a patient-derived xenograft (PDX) model. Results: We successfully established a novel LSCC cell line with hyperactivated mTORC1 activity and then identified integrin subunit alpha 5 (ITGA5) as a novel functional downstream effector of mTORC1 in the progression of LSCC. Elevated ITGA5 promotes LSCC progression through augmentation of ephrin-B2 (EFNB2). Clinical data analysis indicated that the activation of the mTORC1-ITGA5-EFNB2 signaling pathway is associated with malignant progression and poor prognosis of LSCC patients. Inhibition of ITGA5 significantly sensitized LSCC cells to CDDP. Conclusions: Our findings highlight a novel molecular mechanism for the tumorigenesis driven by deregulated mTORC1 signaling in LSCC, suggesting that the ITGA5-EFNB2 axis may be a therapeutic target for the treatment of mTORC1-related LSCC.


Subject(s)
Carcinoma, Squamous Cell , Ephrin-B2 , Integrins , Laryngeal Neoplasms , Squamous Cell Carcinoma of Head and Neck , Humans , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Ephrin-B2/genetics , Ephrin-B2/metabolism , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Integrins/genetics , Integrins/metabolism , Laryngeal Neoplasms/genetics , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Up-Regulation
6.
Front Mol Biosci ; 9: 792482, 2022.
Article in English | MEDLINE | ID: mdl-35573741

ABSTRACT

Objective: The mammalian target of the rapamycin complex 1 (mTORC1) signaling pathway has emerged as a crucial player in the oncogenesis and development of head and neck squamous cell carcinoma (HNSCC), however, to date, no relevant gene signature has been identified. Therefore, we aimed to construct a novel gene signature based on the mTORC1 pathway for predicting the outcomes of patients with HNSCC and their response to treatment. Methods: The gene expression and clinical data were retrieved from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The key prognostic genes associated with the mTORC1 pathway were screened by univariate Cox regression analyses. A prognostic signature was then established based on significant factors identified in the multivariate Cox regression analysis. The performance of the multigene signature was evaluated by the Kaplan-Meier (K-M) survival analysis and receiver operating characteristic (ROC) analysis. Based on the median risk score, patients were categorized into high- and low-risk groups. Subsequently, a hybrid prognostic nomogram was constructed and estimated by a calibration plot and decision curve analysis. Furthermore, immune cell infiltration and therapeutic responses were compared between the two risk groups. Finally, we measured the expression levels of seven genes by quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). Results: The mTORC1 pathway-based signature was constructed using the seven identified genes (SEC11A, CYB5B, HPRT1, SLC2A3, SC5D, CORO1A, and PIK3R3). Patients in the high-risk group exhibited a lower overall survival (OS) rate than those in the low-risk group in both datasets. Through the univariate and multivariate Cox regression analyses, this gene signature was confirmed to be an independent prognostic risk factor for HNSCC. The constructed nomogram based on age, American Joint Committee on Cancer (AJCC) stage, and the risk score exhibited satisfactory performance in predicting the OS. In addition, immune cell infiltration and chemotherapeutic and immunotherapeutic responses differed significantly between the two risk groups. The expression levels of SEC11A and CYB5B were higher in HNSCC tissues than in normal tissues. Conclusion: Our study established and verified an mTORC1 signaling pathway-related gene signature that could be used as a novel prognostic factor for HNSCC.

7.
Cell Death Discov ; 7(1): 144, 2021 Jun 14.
Article in English | MEDLINE | ID: mdl-34127647

ABSTRACT

Wallerian degeneration (WD) involves the recruitment of macrophages for debris clearance and nerve regeneration, and the cause of the foamy macrophages that are frequently observed in peripheral transection injuries is unknown. Recent studies indicated that these foamy cells are generated by gasdermin D (GSDMD) via membrane perforation. However, whether these foamy cells are pyroptotic macrophages and whether their cell death elicits immunogenicity in peripheral nerve regeneration (PNR) remain unknown. Therefore, we used GSDMD-deficient mice and mice with deficiencies in other canonical inflammasomes to establish a C57BL/6 J mouse model of sciatic nerve transection and microanastomosis (SNTM) and evaluate the role of GSDMD-executed pyroptosis in PNR. In our study, the GSDMD-/- mice with SNTM showed a significantly diminished number of foamy cells, better axon regeneration, and a favorable functional recovery, whereas irregular axons or gaps in the fibers were found in the wild-type (WT) mice with SNTM. Furthermore, GSDMD activation in the SNTM model was dependent on the NLRP3 inflammasome and caspase-1 activation, and GSDMD-executed pyroptosis resulted in a proinflammatory environment that polarized monocytes/macrophages toward the M1 (detrimental) but not the M2 (beneficial) phenotype. In contrast, depletion of GSDMD reversed the proinflammatory microenvironment and facilitated M2 polarization. Our results suggested that inhibition of GSDMD may be a potential treatment option to promote PNR.

8.
Int Immunopharmacol ; 93: 107406, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33601246

ABSTRACT

In patients with COVID-19,type 2 diabetes mellitus (T2DM) can impair the function of nasal-associated lymphoid tissue (NALT) and result in olfactory dysfunction. Exploring the causative alterations of T2DM within the nasal mucosa and NALT could provide insight into the pathogenic mechanisms and bridge the gap between innate immunity and adaptive immunity for virus clearance. Here, we designed a case-control study to compare the olfactory function (OF) among the groups of normal control (NC), COVID-19 mild pneumonia (MP), and MP patients with T2DM (MPT) after a 6-8 months' recovery, in which MPT had a higher risk of hyposmia than MP and NC. No significant difference was found between the MP and NC. This elevated risk of hyposmia indicated that T2DM increased COVID-19 susceptibility in the nasal cavity with unknown causations. Therefore, we used the T2DM animal model (db/db mice) to evaluate how T2DM increased COVID-19 associated susceptibilities in the nasal mucosa and lymphoid tissues. Db/db mice demonstratedupregulated microvasculature ACE2 expression and significant alterations in lymphocytes component of NALT. Specifically, db/db mice NALT had increased immune-suppressive TCRγδ+ CD4-CD8- T and decreased immune-effective CD4+/CD8+ TCRß+ T cells and decreased mucosa-protective CD19+ B cells. These results indicated that T2DM could dampen the first-line defense of nasal immunity, and further mechanic studies of metabolic damage and NALT restoration should be one of the highest importance for COVID-19 healing.


Subject(s)
Anosmia/immunology , Anosmia/virology , COVID-19/immunology , Diabetes Mellitus, Type 2/immunology , Diabetes Mellitus, Type 2/virology , Adult , Angiotensin-Converting Enzyme 2/metabolism , Animals , Anosmia/metabolism , B-Lymphocytes/immunology , COVID-19/metabolism , COVID-19/physiopathology , Case-Control Studies , Diabetes Mellitus, Type 2/metabolism , Female , Humans , Immunity, Mucosal/immunology , Lymphoid Tissue/immunology , Macrophages/immunology , Male , Mice , Mice, Inbred C57BL , Middle Aged , Models, Animal , Nasal Mucosa/immunology , Olfactory Mucosa/metabolism , Risk Factors , SARS-CoV-2/isolation & purification , Serine Endopeptidases/metabolism , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...