Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 10(5): e2205041, 2023 02.
Article in English | MEDLINE | ID: mdl-36516309

ABSTRACT

Poor fiber orientation and mismatched bone-ligament interface fusion have plagued the regeneration of periodontal defects by cell-based scaffolds. A 3D bioprinted biomimetic periodontal module is designed with high architectural integrity using a methacrylate gelatin/decellularized extracellular matrix (GelMA/dECM) cell-laden bioink. The module presents favorable mechanical properties and orientation guidance by high-precision topographical cues and provides a biochemical environment conducive to regulating encapsulated cell behavior. The dECM features robust immunomodulatory activity, reducing the release of proinflammatory factors by M1 macrophages and decreasing local inflammation in Sprague Dawley rats. In a clinically relevant critical-size periodontal defect model, the bioprinted module significantly enhances the regeneration of hybrid periodontal tissues in beagles, especially the anchoring structures of the bone-ligament interface, well-aligned periodontal fibers, and highly mineralized alveolar bone. This demonstrates the effectiveness and feasibility of 3D bioprinting combined with a dental follicle-specific dECM bioink for periodontium regeneration, providing new avenues for future clinical practice.


Subject(s)
Decellularized Extracellular Matrix , Tissue Scaffolds , Dogs , Rats , Animals , Tissue Scaffolds/chemistry , Extracellular Matrix/chemistry , Rats, Sprague-Dawley , Gelatin
2.
Stem Cell Res Ther ; 13(1): 41, 2022 01 29.
Article in English | MEDLINE | ID: mdl-35093186

ABSTRACT

BACKGROUND: The regeneration of bone loss that occurs after periodontal diseases is a significant challenge in clinical dentistry. Extracellular vesicles (EVs)-based cell-free regenerative therapies represent a promising alternative for traditional treatments. Developmental biology suggests matrix vesicles (MVs), a subtype of EVs, contain mineralizing-related biomolecules and play an important role in osteogenesis. Thus, we explore the therapeutic benefits and expect to find an optimized strategy for MV application. METHODS: Healthy human dental follicle cells (DFCs) were cultured with the osteogenic medium to generate MVs. Media MVs (MMVs) were isolated from culture supernatant, and collagenase-released MVs (CRMVs) were acquired from collagenase-digested cell suspension. We compared the biological features of the two MVs and investigated their induction of cell proliferation, migration, mineralization, and the modulation of osteogenic genes expression. Furthermore, we investigated the long-term regenerative capacity of MMVs and CRMVs in an alveolar bone defect rat model. RESULTS: We found that both DFC-derived MMVs and CRMVs effectively improved the proliferation, migration, and osteogenic differentiation of DFCs. Notably, CRMVs showed better bone regeneration capabilities. Compared to MMVs, CRMVs-induced DFCs exhibited increased synthesis of osteogenic marker proteins including ALP, OCN, OPN, and MMP-2. In the treatment of murine alveolar bone defects, CRMV-loaded collagen scaffold brought more significant therapeutic outcomes with less unhealing areas and more mature bone tissues in comparison with MMVs and acquired the effects resembling DFCs-based treatment. Furthermore, the western blotting results demonstrated the activation of the PLC/PKC/MAPK pathway in CRMVs-induced DFCs, while this cascade was inhibited by MMVs. CONCLUSIONS: In summary, our findings revealed a novel cell-free regenerative therapy for repairing alveolar bone defects by specific MV subtypes and suggest that PLC/PKC/MAPK pathways contribute to MVs-mediated alveolar bone regeneration.


Subject(s)
Dental Sac , Osteogenesis , Animals , Bone Regeneration , Cell Differentiation/physiology , Cells, Cultured , Mice , Osteogenesis/genetics , Rats , Stem Cells
3.
Stem Cells Dev ; 30(4): 165-176, 2021 02.
Article in English | MEDLINE | ID: mdl-33349125

ABSTRACT

Periodontal tissues consist of cementum, periodontal ligaments, and alveolar bone, which provide indispensable support for physiological activities involving mastication, swallowing, and pronunciation. The formation of periodontal tissues requires a complex process, during which a close relationship with biomineralization is noticeable. Alveolar bone and cementum are physically hard, both of which are generated from biomineralization and possess the exact mechanical properties resembling other hard tissues. However, when periodontitis, congenital abnormalities, periapical diseases, and other pathological conditions affect the organism, the most common symptom, alveolar bone defect, is always unavoidable, which results in difficulties for current clinical treatment. Thus, exploring effective therapies to improve the prognosis is important. Matrix vesicles (MVs), a special subtype of extracellular vesicles related to histogenesis, are widely produced by the stem cells of developing hard tissues. With the assistance of the enzymes and transporters contained within them, MVs can construct the extracellular matrix and an adequate microenvironment, thus promoting biomineralization and periodontal development. Presently, MVs can be effectively extracted and delivered by scaffolds and generate hard tissues in vitro and in vivo, which are expected to be translated into therapies for alveolar bone defects. In this review, we generalize recent research progress on MV morphology, molecular composition, biological mechanism, and, in particular, the biological functions in periodontal development. In addition to the above unique roles of MVs, we further describe the available MV-related biotechnologies and achievements that make them promising for coping with existing problems and improving the treatment of alveolar bone defects.


Subject(s)
Alveolar Process/metabolism , Dental Cementum/metabolism , Extracellular Vesicles/physiology , Periodontium/metabolism , Stem Cells/metabolism , Alveolar Process/cytology , Animals , Biomineralization/physiology , Bone Regeneration/physiology , Dental Cementum/cytology , Extracellular Vesicles/metabolism , Extracellular Vesicles/ultrastructure , Humans , Microscopy, Electron, Transmission
SELECTION OF CITATIONS
SEARCH DETAIL
...