Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Diving Hyperb Med ; 51(2): 134-139, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34157727

ABSTRACT

INTRODUCTION: Exposure to very high oxygen partial pressure may cause central nervous system oxygen toxicity (CNS-OT). The role of necroptosis in the pathogenesis of CNS-OT is still unclear. METHODS: In experiment one, male C57BL/6 mice in the oxygen toxicity (OT) group (n = 5) and necrostatin-1 (Nec-1; a necroptosis inhibitor) (1.5 mg·kg-1, intraperitoneal) group (n = 5) were exposed to pure oxygen at 600 kPa, and the latency to tonic-clonic seizure was recorded. In experiment two, mice were divided into three groups: control group (n = 11), OT group (n = 12) and Nec-1 group (n = 12). Nec-1 was intraperitoneally administered 30 min before oxygen exposure. Mice in the OT group and Nec-1 group were exposed to pure oxygen at 400 kPa for 30 min, and then sacrificed; the brain was harvested for the assessment of inflammation, oxidative stress and necroptosis. RESULTS: Experiment one. Nec-1 pre-treatment significantly prolonged the latency to seizure (245 [SD 18] seconds in the OT group versus 336 (34) seconds in the Nec-1 group). Experiment two. Nec-1 pre-treatment markedly reduced inflammatory cytokines and inhibited cerebral necroptosis, but failed to significantly suppress cerebral oxidative stress. CONCLUSIONS: These findings indicate necroptosis is involved in the pathogenesis of CNS-OT, and inhibition of necroptosis may prolong seizure latency, but the specific mechanisms should be investigated further.


Subject(s)
Oxygen , Seizures , Animals , Apoptosis , Imidazoles , Indoles , Male , Mice , Mice, Inbred C57BL , Partial Pressure , Seizures/chemically induced
2.
Front Physiol ; 11: 273, 2020.
Article in English | MEDLINE | ID: mdl-32273851

ABSTRACT

Inflammatory reaction is the crux in various clinical critical diseases including decompression sickness (DCS). Ulinastatin (UTI), a potent anti-inflammatory agent, has been used clinically, including as a substitution for steroids. This study aimed to explore the potential effects of UTI upon DCS in a rabbit model. Eighty-eight rabbits were subjected to simulated diving to 6 atmospheres absolute (ATA) for 60 min with 2.5-minute decompression. Three doses of UTI (15/7.5/3.75 × 105 U/kg) or saline were intravenously administered immediately following decompression. Circulating bubbles were monitored for 3 h following decompression and DCS signs were evaluated for 24 h. Blood was sampled 8 times during 72 h after decompression for inflammatory, endothelial, oxidative and routine blood indices. Lung tissues were also sampled for evaluating endothelial function. Another six rabbits were used as Normal controls. In the high dose UTI group the mortality, general morbidity and incidence of severe DCS was decreased from 31.25 to 9.38% (P = 0.030), 84.38 to 62.50% (P = 0.048) and 46.88 to 21.88% (P = 0.035), respectively. The high dose of UTI significantly postponed the occurrence of DCS (P = 0.030) and prolonged survival time (P = 0.009) compared with the Saline group, and significantly ameliorated inflammation responses, endothelial injuries and oxidative damage. The results strongly suggest the benefit of UTI on DCS, especially for severe cases. Large doses are needed to achieve significant effects. UTI may be a potential ideal pharmacological candidate for the treatment of severe DCS.

3.
Front Physiol ; 10: 748, 2019.
Article in English | MEDLINE | ID: mdl-31258487

ABSTRACT

[This corrects the article DOI: 10.3389/fphys.2019.00605.].

4.
Front Physiol ; 10: 605, 2019.
Article in English | MEDLINE | ID: mdl-31178750

ABSTRACT

Endothelial dysfunction has been considered as pivotal in the pathogenesis of decompression sickness (DCS) and contributes substantively to subsequent inflammatory responses. Escin is well known for its endothelial protection and anti-inflammatory properties, and its protection against DCS has been proved in a rat model. This study aimed to further investigate the protection of escin against DCS in swine. Sixteen swine were subjected to a two-stage experiment with an interval of 7 days. In each stage, 7 days before a simulated air dive, the swine were treated with escin or saline. The first group received a successive administration of escin for 7 days prior to the first dive and saline for 7 days prior to the second; the second group was treated with saline and then escin. After decompression, signs of DCS and circulating bubbles were monitored, and blood was sampled for platelet count and determination of inflammatory and endothelial related indices. The death rate of DCS was markedly decreased in swine treated with escin compared with that in animals treated with saline, though not statistically significant due to the limited number of animals. Escin had no effect on bubble load but significantly ameliorated platelet reduction and endothelial dysfunction, as well as oxidative and inflammatory responses. The results further suggest the beneficial effects of escin on DCS by its endothelia-protective properties, and escin has the potential to be a candidate drug for DCS prevention and treatment.

5.
J Exp Biol ; 221(Pt 5)2018 03 07.
Article in English | MEDLINE | ID: mdl-29212841

ABSTRACT

Decompression sickness (DCS) occurs when ambient pressure is severely reduced during diving and aviation. Hyperbaric oxygen (HBO) pretreatment has been shown to exert beneficial effects on DCS in rats via heat-shock proteins (HSPs). We hypothesized that HBO pretreatment will also reduce DCS via HSPs in swine models. In the first part of our investigation, six swine were subjected to a session of HBO treatment. HSP32, 60, 70 and 90 were detected, before and at 6, 12, 18, 24 and 30 h following exposure in lymphocytes. In the second part of our investigation, another 10 swine were randomly assigned into two groups (five per group). All swine were subjected to two simulated air dives in a hyperbaric chamber with an interval of 7 days. Eighteen hours before each dive, the swine were pretreated with HBO or air: the first group received air pretreatment prior to the first dive and HBO pretreatment prior to the second; the second group were pretreated with HBO first and then air. Bubble loads, skin lesions, inflammation and endothelial markers were detected after each dive. In lymphocytes, all HSPs increased significantly (P<0.05), with the greatest expression appearing at 18 h for HSP32 and 70. HBO pretreatment significantly reduced all the determined changes compared with air pretreatment. The results demonstrate that a single exposure to HBO 18 h prior to diving effectively protects against DCS in the swine model, possibly via induction of HSPs.


Subject(s)
Decompression Sickness/prevention & control , Heat-Shock Proteins/metabolism , Hyperbaric Oxygenation , Animals , Decompression Sickness/blood , Decompression Sickness/physiopathology , Diving , Lymphocytes/metabolism , Male , Sus scrofa
SELECTION OF CITATIONS
SEARCH DETAIL
...