Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
1.
Food Funct ; 15(15): 8030-8042, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38984966

ABSTRACT

Acute kidney injury (AKI) is a kind of critical kidney disease characterized by tubular injury, rapid decline of renal function and renal inflammation, with high clinical incidence. AKI has been shown to be associated with dysregulation of the gut microbiota and impaired intestinal barrier. Bifidobacterium has a positive impact on the treatment of many diseases. However, little is known about the role and mechanism of Bifidobacterium in AKI. Based on previous experiments, Bifidobacterium bifidum FL228.1 and FL276.1, which can relieve intestinal inflammation, and Bifidobacterium bifidum ZL.1, which has anti-inflammatory potential, were screened. This study aimed to investigate the effects of Bifidobacterium bifidum FL228.1, FL276.1 and ZL.1 on AKI, focusing on their role in the gut microbiota composition and intestinal barrier function. Our results showed that Bifidobacterium bifidum FL228.1, FL276.1 and ZL.1 effectively improved kidney function in mice with AKI by regulating the gut microbiota dysregulation, inhibiting intestinal inflammation and rebuilding the intestinal mucosal barrier. In addition, intervention with probiotics turned the gut microbiota disturbance caused by AKI into a normalized trend, reversed the adverse outcome of microbiota imbalance, and increased the abundance of potentially beneficial bacteria Bifidobacterium and Faecalibaculum. In summary, Bifidobacterium bifidum FL228.1, FL276.1, and ZL.1 alleviate adenine-induced AKI based on the gut-kidney axis. Although their mechanisms of action are different, their effect on alleviating AKI is almost the same.


Subject(s)
Acute Kidney Injury , Adenine , Bifidobacterium bifidum , Gastrointestinal Microbiome , Intestinal Mucosa , Probiotics , Animals , Acute Kidney Injury/chemically induced , Acute Kidney Injury/therapy , Mice , Probiotics/pharmacology , Male , Adenine/adverse effects , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Disease Models, Animal , Mice, Inbred C57BL , Kidney , Intestines/microbiology , Intestinal Barrier Function
2.
J Agric Food Chem ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39024493

ABSTRACT

Plasmin-induced protein hydrolysis significantly compromises the stability of ultrahigh-temperature (UHT) milk. ß-Lactoglobulin (ß-Lg) was observed to inhibit plasmin activity, suggesting that there were active sites as plasmin inhibitors in ß-Lg. Herein, plasmin inhibitory peptides were explored from ß-Lg using experimental and computational techniques. The results revealed that increased denaturation of ß-Lg enhanced its affinity for plasmin, leading to a stronger inhibition of plasmin activity. Molecular dynamics simulations indicated that electrostatic and van der Waals forces were the primary binding forces in the ß-Lg/plasmin complex. Denatured ß-Lg increased hydrogen bonding and reduced the binding energy with plasmin. The sites of plasmin bound to ß-Lg were His624, Asp667, and Ser762. Four plasmin inhibitory peptides, QTMKGLDI, EKTKIPAV, TDYKKYLL, and CLVRTPEV, were identified from ß-Lg based on binding sites. These peptides effectively inhibited plasmin activity and enhanced the UHT milk stability. This study provided new insights into the development of novel plasmin inhibitors to improve the stability of UHT milk.

3.
Int J Food Microbiol ; 421: 110787, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38878704

ABSTRACT

Gamma-aminobutyric acid (GABA) produced by lactic acid bacteria (LAB) is safe and has several health benefits. Levilactobacillus brevis YSJ3 was selected from 110 LAB. It exhibited the highest in vitro GABA production level of 970.10 µg/mL. Whole-genome analysis revealed that L. brevis YSJ3 contained gadR, gadC, gadB and gadA. Furthermore, the Luedeking-Piret model was fitted, which indicated that GABA production was divided into three stages. The gadR 0079, gadC 0080, and gadB 0081 were confirmed to promote GABA synthesis. Moreover, 55 metabolites, particularly those involved in arginine metabolism, were significantly different at 6 and 20 h of cultivation. Notably, L. brevis YSJ3 significantly improved sleep in mice and increased GABA levels in the mice's gut compared with the control group. This suggests that the oral administration of L. brevis YSJ3 improves sleep quality, probably by increasing intestinal GABA levels. Overall, L. brevis YSJ3 was confirmed as a GABA-producing strain in vitro and in vivo, making it a promising probiotic candidate for its application in food and medicine.


Subject(s)
Genome, Bacterial , Levilactobacillus brevis , Probiotics , gamma-Aminobutyric Acid , Levilactobacillus brevis/genetics , Levilactobacillus brevis/metabolism , Animals , gamma-Aminobutyric Acid/metabolism , Probiotics/metabolism , Mice , Male , Whole Genome Sequencing , Gastrointestinal Microbiome
4.
Foods ; 13(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38890836

ABSTRACT

Nisin is used as a natural food preservative because of its broad-spectrum antimicrobial activity against Gram-positive bacteria. However, free nisin is susceptible to various factors that reduce its antimicrobial activity. Milk protein, a protein derived from milk, has self-assembly properties and is a good carrier of bioactive substances. In this study, lactoferrin-nisin nanoparticles (L-N), bovine serum albumin-nisin nanoparticles (B-N), and casein-nisin nanoparticles (C-N) were successfully prepared by a self-assembly technique, and then their properties were investigated. The studies revealed that lactoferrin (LF) and nisin formed L-N mainly through hydrophobic interactions and hydrogen bonding, and L-N had the best performance. The small particle size (29.83 ± 2.42 nm), dense reticular structure, and good thermal stability, storage stability, and emulsification of L-N laid a certain foundation for its application in food. Further bacteriostatic studies showed that L-N enhanced the bacteriostatic activity of nisin, with prominent inhibitory properties against Listeria monocytogenes, Staphylococcus aureus, and Bacillus cereus, which mainly disrupted the cell membrane of the bacteria. The above results broaden our understanding of milk protein-nisin nanoparticles, while the excellent antibacterial activity of L-N makes it promising for application as a novel food preservative, which will help to improve the bioavailability of nisin in food systems.

5.
Food Chem ; 456: 140012, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38876066

ABSTRACT

Age gelation is undesirable for direct UHT (dUHT) milk, which is closely related to protein hydrolysis. However, little information is available for the role of serum peptides during the age gelation. In this study, the composition and protein morphology of serum phase were characterized by RP-HPLC, ICP-MS and TEM. The results showed significant increases in soluble proteins, free amino acids, calcium, and phosphorus from casein micelles, indicating protein hydrolysis and peptide release into the serum phase. 23,466 peptides derived from caseins and other proteins were identified in serum phase by peptidomics. The serum peptide profiles of age gelation milk changed dramatically. Peptide fingerprinting revealed that plasmin and cathepsin contributed to the protein hydrolysis during age gelation, with a significant increase in their activity observed. 23 characteristic peptides were ultimately selected as potential indicators for age gelation. These findings provide new insights into the age gelation of UHT milk.


Subject(s)
Milk , Peptides , Animals , Milk/chemistry , Peptides/chemistry , Cattle , Gels/chemistry , Proteomics , Caseins/chemistry , Milk Proteins/chemistry , Hydrolysis
6.
Int J Biol Macromol ; 272(Pt 1): 132729, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821307

ABSTRACT

This study investigated the effects of foxtail millet sourdough fermentation time (0, 8, 16, and 24 h) on the protein structural properties, thermomechanical, fermentation, dynamic rheological, starch granules crystalline regions molecular mobility, and starch microstructural characteristics. The fermentation led to a significant increase in the concentration of free amino acids from protein hydrolysis. Fourier transform infrared spectroscopy (FTIR) revealed changes in protein secondary structure and the presence of functional groups of different bioactive compounds. The result of thermomechanical properties showed a significant increase in the stability (0.70-0.79 min) and anti-retrogradation ability (2.29-3.14 Nm) of lactic acid bacteria (LAB) sourdough compared to the control dough, showing a wider processing applicability with radar profiler index. In contrast, sourdoughs with lower tan δ values had higher elasticity and strength. Scanning electron microscopy showed that the surface of the starch appeared from smooth to uneven with patchy shapes and cavities, which declined the crystallinity from 34.00 % to 21.57 %, 23.64 %, 25.09 %, and 26.34 % respectively. Fermentation changed the To, Tp, Tc, and ΔH of the starch. The results of the study will have great potential for application in the whole grain sourdough industry.


Subject(s)
Fermentation , Starch , Starch/chemistry , Starch/metabolism , Setaria Plant/chemistry , Setaria Plant/metabolism , Edible Grain/chemistry , Edible Grain/microbiology , Bread/microbiology , Plant Proteins/chemistry , Plant Proteins/metabolism , Flour/microbiology , Rheology
7.
Food Funct ; 15(9): 4862-4873, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38587236

ABSTRACT

Intestinal infections are strongly associated with infant mortality, and intestinal immunoglobulin A (IgA) is important to protect infants from intestinal infections after weaning. This study aims to screen probiotics that can promote the production of intestinal IgA after weaning and further explore their potential mechanisms of action. In this study, probiotics promoting intestinal IgA production were screened in weanling mouse models. The results showed that oral administration of Bifidobacterium bifidum (B. bifidum) FL228.1 and Bifidobacterium bifidum (B. bifidum) FL276.1 significantly enhanced IgA levels in the small intestine and upregulated the expression of a proliferation-inducing ligand (APRIL) and its upstream regulatory factor toll-like receptor 4 (TLR4). Furthermore, B. bifidum FL228.1 upregulated the relative abundance of Lactobacillus, while B. bifidum FL276.1 increased the relative abundance of Marvinbryantia and decreased Mucispirillum, further elevating intestinal IgA levels. In summary, B. bifidum FL228.1 and B. bifidum FL276.1 can induce IgA production in the intestinal tract of weanling mice by promoting intestinal APRIL expression and mediating changes in the gut microbiota, thus playing a significant role in enhancing local intestinal immunity in infants.


Subject(s)
Bifidobacterium bifidum , Gastrointestinal Microbiome , Immunoglobulin A , Probiotics , Animals , Female , Male , Mice , Bifidobacterium bifidum/physiology , Intestinal Mucosa/metabolism , Intestinal Mucosa/immunology , Intestines/immunology , Intestines/microbiology , Mice, Inbred BALB C , Probiotics/pharmacology , Probiotics/administration & dosage , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Tumor Necrosis Factor Ligand Superfamily Member 13/genetics , Tumor Necrosis Factor Ligand Superfamily Member 13/metabolism , Weaning
8.
Nutrients ; 16(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38474811

ABSTRACT

Lactic-acid-bacteria-derived bacteriocins are used as food biological preservatives widely. Little information is available on the impact of bacteriocin intake with food on gut microbiota in vivo. In this study, the effects of fermented milk supplemented with nisin (FM-nisin) or plantaricin Q7 (FM-Q7) from Lactiplantibacillus plantarum Q7 on inflammatory factors and the gut microbiota of mice were investigated. The results showed that FM-nisin or FM-Q7 up-regulated IFN-γ and down-regulated IL-17 and IL-12 in serum significantly. FM-nisin down-regulated TNF-α and IL-10 while FM-Q7 up-regulated them. The results of 16S rRNA gene sequence analysis suggested that the gut microbiome in mice was changed by FM-nisin or FM-Q7. The Firmicutes/Bacteroides ratio was reduced significantly in both groups. It was observed that the volume of Akkermansia_Muciniphila was significantly reduced whereas those of Lachnospiraceae and Ruminococcaceae were increased. The total number of short-chain fatty acids (SCFAs) in the mouse feces of the FM-nisin group and FM-Q7 group was increased. The content of acetic acid was increased while the butyric acid content was decreased significantly. These findings indicated that FM-nisin or FM-Q7 could stimulate the inflammation response and alter gut microbiota and metabolic components in mice. Further in-depth study is needed to determine the impact of FM-nisin or FM-Q7 on the host's health.


Subject(s)
Gastrointestinal Microbiome , Lactobacillales , Nisin , Mice , Animals , Nisin/metabolism , Nisin/pharmacology , Milk/metabolism , RNA, Ribosomal, 16S/genetics , Lactobacillales/metabolism , Butyric Acid
9.
Food Funct ; 15(4): 2328, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38305587

ABSTRACT

Correction for 'Lactobacillus fermentum F40-4 ameliorates hyperuricemia by modulating the gut microbiota and alleviating inflammation in mice' by Jiayuan Cao et al., Food Funct., 2023, 14, 3259-3268, https://doi.org/10.1039/D2FO03701G.

10.
J Agric Food Chem ; 72(9): 4726-4736, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38294408

ABSTRACT

Milk-derived extracellular vesicles can improve intestinal health and have antiosteoporosis potential. In this paper, we explored the effects of bovine raw milk-derived extracellular vesicles (mEVs) on ovariectomized (OVX) osteoporotic mice from the perspective of the gut-bone axis. mEVs could inhibit osteoclast differentiation and improve microarchitecture. The level of osteoporotic biomarkers in OVX mice was restored after the mEVs intervened. Compared with OVX mice, mEVs could enhance intestinal permeability, reduce endotoxin levels, and improve the expression of TNF-α, IL-17, and IL-10. 16S rDNA sequencing indicated that mEVs altered the composition of gut microbiota, specifically for Bacteroides associated with short-chain fatty acids (SCFAs). In-depth analysis of SCFAs demonstrated that mEVs could restore acetic acid, propionic acid, valeric acid, and isovaleric acid levels in OVX mice. Correlation analysis revealed that changed gut microbiota and SCFAs were significantly associated with gut inflammation and osteoporotic biomarkers. This study demonstrated that mEVs could inhibit osteoclast differentiation and improve osteoporosis by reshaping the gut microbiota, increasing SCFAs, and decreasing the level of pro-inflammatory cytokines and osteoclast differentiation-related factors in OVX mice. These findings provide evidence for the use of mEVs as a food supplement for osteoporosis.


Subject(s)
Extracellular Vesicles , Gastrointestinal Microbiome , Osteoporosis , Animals , Cattle , Mice , Milk , Osteogenesis , Osteoporosis/genetics , Biomarkers
11.
Food Funct ; 15(4): 1840-1851, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38273734

ABSTRACT

Osteoporosis has become one of the major diseases that threaten the health of middle-aged and elderly people, and with the growth of an ageing population, more and more people are affected by osteoporosis these days. In recent years, intestinal flora has been found to affect the host immune system, and an overactive immune system is closely related to bone resorption. Probiotics can effectively improve bone density and strength, reduce bone loss, and improve osteoporosis, but their mechanism of action and relationship with intestinal microbiota are still unclear. In this study, two strains of Bifidobacterium (Bifidobacterium bifidum FL228.1 and Bifidobacterium animalis subsp. Lactis F1-7) that can alleviate intestinal inflammation were screened based on previous experiments. Through the construction of an ovariectomized mouse model, the improvement of osteoporosis by Bifidobacterium was detected, and the influence of Bifidobacterium on intestinal immunity was explored. The results show that Bifidobacterium treatment significantly improved bone mineral density (BMD), bone volume/total volume ratio (BV/TV), and trabecular number (Tb·N), and effectively suppressed bone loss. Furthermore, Bifidobacterium treatment could inhibit the expression of inflammatory cytokines in the gut, alleviate gut inflammation, and thus suppress excessive osteoclast generation. Its mechanism of action includes factors that protect the mucosal barrier, including occludin, ZO-1, claudin-2, and MUC2, and the reduction of pro-inflammatory M1 macrophages. B. bifidum FL228.1 increased the abundance of beneficial bacteria in the colon, including Lactobacillus and Colidextribacter. B. animalis F1-7 increased the abundance of Bifidobacterium and decreased the abundance of Desulfovibrio and Ruminococcus in the colon. These research findings expand our understanding of the gut-bone axis and provide new guidance for the development of probiotic-based therapies for osteoporosis in the future.


Subject(s)
Bifidobacterium animalis , Osteoporosis , Probiotics , Humans , Mice , Animals , Aged , Middle Aged , Bifidobacterium/metabolism , Cytokines/metabolism , Inflammation , Bifidobacterium animalis/metabolism , Osteoporosis/therapy , Estrogens
12.
Int J Biol Macromol ; 259(Pt 1): 129152, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38176500

ABSTRACT

Probiotics such as Bifidobacterium spp. generally possess important physiological functions. However, maintaining probiotic viability is a challenge during processing, storage, and digestive transit period. Microencapsulation is widely considered to be an attractive approach. In this study, B. animalis F1-7 microcapsules and B. animalis F1-7-HMO microcapsules were successfully prepared by emulsification/internal gelation with high encapsulation efficiency (90.67 % and 92.16 %, respectively). The current study revealed that HMO-supplemented microcapsules exhibited more stable lyophilized forms and thermal stability. Additionally, a significant improvement in probiotic cell viability was observed in such microcapsules during simulated gastrointestinal (GI) fluids or storage. We also showed that the individual HMO mixtures 6'-SL remarkably promoted the growth and acetate yield of B. animalis F1-7 for 48 h (p < 0.05). The synbiotic combination of 6'-SL with B. animalis F1-7 enhanced SCFAs production in vitro fecal fermentation, decreasing several harmful intestinal bacteria such as Dorea, Escherichia-Shigella, and Streptococcus while enriching the probiotic A. muciniphila. This study provides strong support for HMO or 6'-SL combined with B. animalis F1-7 as an innovative dietary ingredient to bring health benefits. The potential of the synbiotic microcapsules with this combination merits further exploration for future use in the food industry.


Subject(s)
Bifidobacterium animalis , Probiotics , Synbiotics , Humans , Milk, Human , Capsules , Health Maintenance Organizations , Oligosaccharides
13.
Mol Nutr Food Res ; 68(3): e2200846, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38054625

ABSTRACT

SCOPE: People suffer from constipation caused by many factors, including constipation (Opioid-Induced Constipation, OIC) during analgesic treatment. Microorganisms may be a potent solution to this problem, but the mechanism is still unclear. METHODS AND RESULTS: Based on models in vivo and in vitro, the potential mechanism involving Bifidobacterium animalis F1-7 (B. animalis F1-7), screened in the previous studies, is explored through non-targeted metabonomics, electrophysiological experiment and molecular level docking. The results showed that B. animalis F1-7 effectively alleviates OIC and promotes the expression of chromogranin A (CGA) and 5-hydroxytryptamine (5-HT). The metabolite 13,14-dihydro-15-keto-PGE2 related to B. animalis F1-7 is found, which has a potential improvement effect on OIC at 20 mg kg BW-1 in vivo. At 30 ng mL-1 it effectively stimulates secretion of CGA/5-HT (408.95 ± 1.18 ng mL-1 ) by PC-12 cells and changes the membrane potential potassium ion current without affecting the sodium ion current in vitro. It upregulates the target of free fatty acid receptor-4 protein(FFAR4/ß-actin, 0.81 ± 0.02). CONCLUSION: The results demonstrate that metabolite 13,14-dihydro-15-keto-PGE2 participated in B. animalis F1-7 to alleviate OIC via the 5-HT pathway.


Subject(s)
Bifidobacterium animalis , Dinoprostone/analogs & derivatives , Opioid-Induced Constipation , Humans , Serotonin , Analgesics, Opioid , Constipation/chemically induced , Constipation/drug therapy
14.
Int J Biol Macromol ; 257(Pt 2): 127527, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37866558

ABSTRACT

Adhesion to gastrointestinal tract is crucial for bifidobacteria to exert their probiotic effects. Our previous work found that bile salts significantly enhance the adhesion ability of Bifidobacterium longum BBMN68 to HT-29 cells. In this study, trypsin-shaving and LC-MS/MS-based surface proteomics were employed to identify surface proteins involved in bile stress response. Among the 829 differentially expressed proteins, 56 up-regulated proteins with a fold change >1.5 were subjected to further analysis. Notably, the minor pilin subunit FimB was 4.98-fold up-regulated in response to bile stress. In silico analysis and RT-PCR confirmed that gene fimB, fimA and srtC were co-transcribed and contributed to the biosynthesis of sortase-dependent pili Pil1. Moreover, scanning electron microscopy and immunogold electron microscopy assays showed increased abundance and length of Pil1 on BBMN68 under bile stress. As the major pilin subunit FimA serves as adhesion component of Pil1, an inhibition assay using anti-FimA antibodies further confirmed the critical role of Pil1 in mediating the adhesion of BBMN68 to HT-29 cells under bile stress. Our findings suggest that the up-regulation of Pil1 in response to bile stress enhances the adhesion of BBMN68 to intestinal epithelial cells, highlighting a novel mechanism of gut persistence in B. longum strains.


Subject(s)
Bifidobacterium longum , Humans , Bifidobacterium longum/genetics , Fimbriae Proteins/genetics , Fimbriae Proteins/pharmacology , Bile , Up-Regulation , HT29 Cells , Chromatography, Liquid , Tandem Mass Spectrometry
15.
Nutrients ; 15(22)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-38004116

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic and recurrent disease. It has been observed that the incidence and prevalence of IBD are increasing, which consequently raises the risk of developing colon cancer. Recently, the regulation of the intestinal barrier by probiotics has become an effective treatment for colitis. Akkermansia muciniphila-derived extracellular vesicles (Akk EVs) are nano-vesicles that contain multiple bioactive macromolecules with the potential to modulate the intestinal barrier. In this study, we used ultrafiltration in conjunction with high-speed centrifugation to extract Akk EVs. A lipopolysaccharide (LPS)-induced RAW264.7 cell model was established to assess the anti-inflammatory effects of Akk EVs. It was found that Akk EVs were able to be absorbed by RAW264.7 cells and significantly reduce the expression of nitric oxide (NO), TNF-α, and IL-1ß (p < 0.05). We explored the preventative effects on colitis and the regulating effects on the intestinal barrier using a mouse colitis model caused by dextran sulfate sodium (DSS). The findings demonstrated that Akk EVs effectively prevented colitis symptoms and reduced colonic tissue injury. Additionally, Akk EVs significantly enhanced the effectiveness of the intestinal barrier by elevating the expression of MUC2 (0.53 ± 0.07), improving mucus integrity, and reducing intestinal permeability (p < 0.05). Moreover, Akk EVs increased the proportion of the beneficial bacteria Firmicutes (33.01 ± 0.09%) and downregulated the proportion of the harmful bacteria Proteobacteria (0.32 ± 0.27%). These findings suggest that Akk EVs possess the ability to regulate immune responses, protect intestinal barriers, and modulate the gut microbiota. The research presents a potential intervention approach for Akk EVs to prevent colitis.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Animals , Mice , Colitis/chemically induced , Colitis/prevention & control , Intestines , Colon , Disease Models, Animal , Mice, Inbred C57BL , Dextran Sulfate
16.
Nutrients ; 15(16)2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37630708

ABSTRACT

Bacteriocins are crucial metabolites of probiotics that display beneficial functions. The intestinal barrier is an important target on which probiotics exert their intestinal health activity. However, the impacts of bacteriocin-producing probiotics on the intestinal barrier are unclear. In this study, the effects of bacteriocin-producing Lactiplantibacillus plantarum Q7 and L. plantarum F3-2 on the intestinal barrier of mice were explored. It was shown that L. plantarum Q7 promoted the expression of mucin MUC2 to enhance the protection provided by the intestinal mucus layer. L. plantarum Q7 up-regulated the gene expression of intestinal tight junction proteins ZO-1 and JAM-1 significantly, and L. plantarum F3-2 up-regulated ZO-1 and Claudin-1 markedly, which exhibited tight junction intestinal barrier function. The two strains promoted the release of IgA and IgG at varying degrees. The antimicrobial peptide gene RegIIIγ was up-regulated markedly, and the gene expression of inflammatory cytokines appeared to exhibit an upward trend with L. plantarum Q7 treatment, so as to enhance intestinal immune regulation function. Furthermore, L. plantarum Q7 and L. plantarum F3-2 increased the abundance of the beneficial bacteria Muribaculaceae, inhibited the growth of the harmful bacteria Parabacteroides, and facilitated the synthesis of total short-chain fatty acids (SCFAs), which seemed to favor the prevention of metabolic diseases. Our results suggested that L. plantarum Q7 and L. plantarum F3-2 showed strain specificity in their protective effects on the intestinal chemical, physical, immunological and biological barriers of mice, which provided theoretical support for the selective utilization of bacteriocin-producing strains to regulate host health.


Subject(s)
Bacteriocins , Intestines , Animals , Mice , Defecation , Antimicrobial Peptides , Bacteriocins/pharmacology , Bacteroidetes
17.
Nutrients ; 15(15)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37571374

ABSTRACT

Bacteriocins production is one of important beneficial characteristics of probiotics, which has antibacterial property against intestinal pathogens and is helpful for regulating intestinal flora. To investigate the impact of bacteriocin-producing probiotics on gut microecology, bacteriocin-producing Lactiplantibacillus plantarum YRL45 was orally administered to mice. The results revealed that it promoted the release of cytokines and improved the phagocytic activity of peritoneal macrophages to activate the immune regulation system. L. plantarum YRL45 was conducive to maintaining the morphology of colon tissue without inflammation and increasing the ratio of villus height to crypt depth in the ileum. The gene expression levels of Muc2, ZO-1 and JAM-1 were significantly up-regulated in the ileum and colon, and the gene expression of Cramp presented an upward trend with L. plantarum YRL45 intervention. Moreover, L. plantarum YRL45 remarkably enhanced the levels of immunoglobulins sIgA, IgA and IgG in the intestine of mice. The 16S rRNA gene analysis suggested that L. plantarum YRL45 administration up-regulated the relative abundance of the beneficial bacteria Muribaculaceae and Akkermansia, down-regulated the abundance of the pathogenic bacteria Lachnoclostridium, and promoted the production of acetic acid, propionic acid and total short-chain fatty acids (SCFAs) in mice feces. Our findings indicated that L. plantarum YRL45 had the potential to be developed as a novel probiotic to regulate the intestinal barrier by altering gut microbiota to enhance intestinal immunity and ameliorate intestinal flora balance.


Subject(s)
Bacteriocins , Gastrointestinal Microbiome , Lactobacillus plantarum , Probiotics , Animals , Mice , Bacteriocins/pharmacology , Bacteriocins/genetics , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Intestinal Mucosa/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Lactobacillus plantarum/metabolism
18.
Nutrients ; 15(9)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37432295

ABSTRACT

L. paracasei subsp. paracasei X12 was obtained from traditional cheese produced in northwestern China. In this study, we showed that whole peptidoglycan (WPG), extracted from L. paracasei subsp. paracasei X12, inhibited proliferation and induced apoptosis in HT-29 cells in a dose-dependent manner. In addition, WPG-induced apoptosis was associated with the loss of mitochondrial membrane potential (Ψm), the release of cytochrome c (Cyto-C) from mitochondrialto cytosolic spaces, activation of Caspase 3, and accumulation of intracellular reactive oxygen species (ROS). Finally, semi-quantitative RT-PCR showed that these events were accompanied by upregulation of proapoptotic genes (Bax or Bad) and downregulation of antiapoptotic genes (Bcl-xl). Taken together, our results demonstrated that WPG induced apoptosis in HT-29 cells through activation of the mitochondrial pathway. WPG exerted only minor toxicity upon noncancerous cells and therefore might be used as a natural agent in the treatment of cancer in future.


Subject(s)
Apoptosis , Cell Wall , Humans , HT29 Cells , Down-Regulation , Lactobacillus
19.
Food Chem ; 422: 136236, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37130453

ABSTRACT

Milk fat globule membrane (MFGM) contains lipids, which are essential for promoting infant brain development and improving cognition. In this study, the lipid differences between human MFGM and four dietary lipid sources (cow MFGM, soybean, krill, and yolk) were compared using the UHPLC-Q-Exactive MS-based lipidomics techniques. A total of 45 lipid classes and 5048 lipid species were detected. The analysis of phospholipid classes revealed that the lipid composition of human MFGM and cow MFGM was more similar than the other dietary-derived lipids. Additionally, the human MFGM lipid species were compared with cow MFGM, soybean, krill, and yolk, and 401, 416, 494, and 444 significantly different lipids were identified, respectively. Through lipid metabolic pathway analysis, differential lipids were mainly involved in the glycerophospholipid metabolic pathway. Overall, these results will provide a rationale for the future addition of lipids to infant formula to more closely approximate human MFGM lipid profiles.


Subject(s)
Glycolipids , Lipidomics , Animals , Female , Cattle , Infant , Humans , Dietary Fats , Infant Formula , Phospholipids , Brain/metabolism , Lipid Droplets/metabolism
20.
Sci Adv ; 9(15): eade5041, 2023 04 14.
Article in English | MEDLINE | ID: mdl-37043568

ABSTRACT

Milk-derived extracellular vesicles (mEVs) have been proposed as a potential nanomedicine for intestinal disorders; however, their impact on intestinal barrier integrity in gut inflammation and associated metabolic diseases has not been explored yet. Here, mEVs derived from bovine and human breast milk exert similar protective effects on epithelial tight junction functionality in vitro, survive harsh gastrointestinal conditions ex vivo, and reach the colon in vivo. Oral administration of mEVs restores gut barrier integrity at multiple levels, including mucus, epithelial, and immune barriers, and prevents endotoxin translocation into the liver in chemical-induced experimental colitis and diet-induced nonalcoholic steatohepatitis (NASH), thereby alleviating gut disorders, their associated liver inflammation, and NASH. Oral administration of mEVs has potential in the treatment of gut inflammation and gut-liver axis-associated metabolic diseases via protection of intestinal barrier integrity.


Subject(s)
Colitis , Extracellular Vesicles , Hepatitis , Non-alcoholic Fatty Liver Disease , Humans , Animals , Cattle , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Milk/metabolism , Inflammation , Extracellular Vesicles/metabolism , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...