Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Phylogenet Evol ; 184: 107801, 2023 07.
Article in English | MEDLINE | ID: mdl-37088242

ABSTRACT

Discovery of cryptic diversity is essential to understanding both the process of speciation and the conservation of species. Determining species boundaries in fern lineages represents a major challenge due to lack of morphologically diagnostic characters and frequent hybridization. Genomic data has substantially enhanced our understanding of the speciation process, increased the resolution of species delimitation studies, and led to the discovery of cryptic diversity. Here, we employed restriction-site-associated DNA sequencing (RAD-seq) and integrated phylogenomic and population genomic analyses to investigate phylogenetic relationships and evolutionary history of 16 tree ferns with marginate scales (Cyatheaceae) from China and Vietnam. We conducted multiple species delimitation analyses using the multispecies coalescent (MSC) model and novel approaches based on genealogical divergence index (gdi) and isolation by distance (IBD). In addition, we inferred species trees using concatenation and several coalescent-based methods, and assessed hybridization patterns and rate of gene flow across the phylogeny. We obtained highly supported and generally congruent phylogenies inferred from concatenated and summary-coalescent methods, and the monophyly of all currently recognized species were strongly supported. Our results revealed substantial evidence of cryptic diversity in three widely distributed Gymnosphaera species, each of which was composite of two highly structure lineages that may correspond to cryptic species. We found that hybridization was fairly common between not only closely related species, but also distantly related species. Collectively, it appears that scaly tree ferns may contain cryptic diversity and hybridization has played an important role throughout the evolutionary history of this group.


Subject(s)
Ferns , Cluster Analysis , Ferns/genetics , Genetic Variation , Genome , Phylogeny , Polymorphism, Single Nucleotide , Hybridization, Genetic
2.
Mol Ecol ; 31(22): 5699-5713, 2022 11.
Article in English | MEDLINE | ID: mdl-36178058

ABSTRACT

The mating system shift from outcrossing to selfing is one of the most frequent evolutionary trends in flowering plants. However, the genomic consequences of this shift remain poorly understood. Specifically, the relative importance of the demographic and genetic processes causing changes in genetic variation and selection efficacy associated with the evolution of selfing is unclear. Here we sequenced the genomes of two Primulina species with contrasting mating systems: P. eburnea (outcrossing) versus P. tabacum (outcrossing, mixed-mating and selfing populations). Whole-genome resequencing data were used to investigate the genomic consequences of mating system shifts within and between species. We found that highly selfing populations of P. tabacum display loss of genetic diversity, increased deleterious mutations, higher genomic burden and fewer adaptive substitutions. However, compared with outcrossing populations, mixed-mating populations did not display loss of genetic diversity and accumulation of genetic load. We find no evidence of population bottlenecks associated with the shift to selfing, which suggests that the genetic effects of selfing on Ne and possibly linked selection, rather than demographic history, are the primary drivers of diversity reduction in highly selfing populations. Our results highlight the importance of distinguishing the relative contribution of mating system and demography on the genomic consequences associated with mating system evolution in plants.


Subject(s)
Reproduction , Self-Fertilization , Reproduction/genetics , Genetic Load , Plants/genetics , Genomics
3.
Mol Ecol ; 31(1): 104-118, 2022 01.
Article in English | MEDLINE | ID: mdl-34664755

ABSTRACT

Interpreting the formation of genomic variation landscape, especially genomic regions with elevated differentiation (i.e. islands), is fundamental to a better understanding of the genomic consequences of adaptation and speciation. Edaphic islands provide excellent systems for understanding the interplay of gene flow and selection in driving population divergence and speciation. However, discerning the relative contribution of these factors that modify patterns of genomic variation remains difficult. We analysed 132 genomes from five recently divergent species in Primulina genus, with four species distributed in Karst limestone habitats and the fifth one growing in Danxia habitats. We demonstrated that both gene flow and linked selection have contributed to genome-wide variation landscape, where genomic regions with elevated differentiation (i.e., islands) were largely derived by divergent sorting of ancient polymorphism. Specifically, we identified several lineage-specific genomic islands that might have facilitated adaptation of P. suichuanensis to Danxia habitats. Our study is amongst the first cases disentangling evolutionary processes that shape genomic variation of plant specialists, and demonstrates the important role of ancient polymorphism in the formation of genomic islands that potentially mediate adaptation and speciation of endemic plants in special soil habitats.


Subject(s)
Gene Flow , Genetic Speciation , Genome , Genomics , Selection, Genetic
4.
BMC Evol Biol ; 20(1): 49, 2020 04 29.
Article in English | MEDLINE | ID: mdl-32349663

ABSTRACT

BACKGROUND: Sympatric sister species provide an opportunity to investigate the genetic mechanisms and evolutionary forces that maintain species boundaries. The persistence of morphologically and genetically distinct populations in sympatry can only occur if some degree of reproductive isolation exists. A pair of sympatric sister species of Primulina (P. depressa and P. danxiaensis) was used to explore the genetic architecture of hybrid male sterility. RESULTS: We mapped one major- and seven minor-effect quantitative trait loci (QTLs) that underlie pollen fertility rate (PFR). These loci jointly explained 55.4% of the phenotypic variation in the F2 population. A Bateson-Dobzhansky-Muller (BDM) model involving three loci was observed in this system. We found genotypic correlations between hybrid male sterility and flower morphology, consistent with the weak but significant phenotypic correlations between PFR and floral traits. CONCLUSIONS: Hybrid male sterility in Primulina is controlled by a polygenic genetic basis with a complex pattern. The genetic incompatibility involves a three-locus BDM model. Hybrid male sterility is genetically correlated with floral morphology and divergence hitchhiking may occur between them.


Subject(s)
Hybridization, Genetic , Lamiales/genetics , Plant Infertility/genetics , Sympatry/genetics , Analysis of Variance , Epistasis, Genetic , Flowers/anatomy & histology , Flowers/genetics , Genetics, Population , Genome, Plant , Genotype , Hybrid Vigor/genetics , Phenotype , Pollen/genetics , Principal Component Analysis , Quantitative Trait Loci/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...