Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
IEEE Sens J ; 18(12): 4961-4968, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-30555284

ABSTRACT

Each year 35,000 cardiac ablation procedures are performed to treat atrial fibrillation through the use of catheter systems. The success rate of this treatment is highly dependent on the force which the catheter applies on the heart wall. If the magnitude of the applied force is much higher than a certain threshold the tissue perforates, whereas if the force is lower than this threshold the lesion size may be too large and is inconsistent. Furthermore, studies have shown large variability in the applied force from trained physicians during treatment, suggesting that physicians are unable to manually regulate the levels of the force at the site of treatment. Current catheter systems do not provide the physicians with active means for contact force control and are only at most aided by visual feedback of the forces measured in situ. This paper discusses a novel design of a robotic end-effector that integrates mechanisms of sensing and actively controlling of the applied forces into a miniaturized compact form. The required specifications for design and integration were derived from the current application under investigation. An off-the-shelf miniature piezoelectric motor was chosen for actuation, and a force sensing solution was developed to meet the specifications. Experimental characterization of the actuator and the force sensor within the integrated setup show compliance with the specifications and pave the way for future experimentation where closed-loop control of the system can be implemented according to the contact force control strategies for the application.

2.
Soft Robot ; 5(2): 204-215, 2018 04.
Article in English | MEDLINE | ID: mdl-29648951

ABSTRACT

As robots begin to interact with humans and operate in human environments, safety becomes a major concern. Conventional robots, although reliable and consistent, can cause injury to anyone within its range of motion. Soft robotics, wherein systems are made to be soft and mechanically compliant, are thus a promising alternative due to their lightweight nature and ability to cushion impacts, but current designs often sacrifice accuracy and usefulness for safety. We, therefore, have developed a bioinspired robotic arm combining elements of rigid and soft robotics such that it exhibits the positive qualities of both, namely compliance and accuracy, while maintaining a low weight. This article describes the design of a robotic arm-wrist-hand system with seven degrees of freedom (DOFs). The shoulder and elbow each has two DOFs for two perpendicular rotational motions on each joint, and the hand has two DOFs for wrist rotations and one DOF for a grasp motion. The arm is pneumatically powered using custom-built McKibben type pneumatic artificial muscles, which are inflated and deflated using binary and proportional valves. The wrist and hand motions are actuated through servomotors. In addition to the actuators, the arm is equipped with a potentiometer in each joint for detecting joint angle changes. Simulation and experimental results for closed-loop position control are also presented in the article.


Subject(s)
Robotics/instrumentation , Equipment Design , Humans , Range of Motion, Articular
SELECTION OF CITATIONS
SEARCH DETAIL
...