Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
J Sci Food Agric ; 96(10): 3596-603, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26612038

ABSTRACT

BACKGROUND: Hot air drying and sun drying are traditional drying technologies widely used in the drying of agricultural products for a long time, but usually recognized as time-consuming or producing lower-quality products. Infrared drying is a rather effective drying technology that has advantages over traditional drying technologies. Thus, in order to investigate the application of infrared drying in the dehydration of red pepper, the drying characteristics and quality of infrared-dried red pepper were compared with those of sun-dried and hot air-dried red pepper. RESULTS: The infrared drying technology significantly enhanced the drying rate when compared with hot air drying and sun drying. Temperature was the most important factor affecting the moisture transfer during the process of infrared drying as well as hot air drying. Effective moisture diffusivity (Deff ) values of infrared drying ranged from 1.58 × 10(-9) to 3.78 × 10(-9) m(2) s(-1) . The Ea values of infrared drying and hot air drying were 42.67 and 44.48 kJ mol(-1) respectively. Infrared drying and hot air drying produced color loss to a similar extent. Relatively higher crispness values were observed for infrared-dried samples. CONCLUSION: Sun drying produced dried red pepper with the best color when compared with hot air drying and infrared drying. Meanwhile, infrared drying markedly improved the drying rate at the same drying temperature level of hot air drying, and the products obtained had relatively better quality with higher crispness values. © 2015 Society of Chemical Industry.


Subject(s)
Capsicum/chemistry , Desiccation/methods , Food Preservation/methods , Infrared Rays , Color , Fruit , Hot Temperature , Sunlight
2.
Guang Pu Xue Yu Guang Pu Fen Xi ; 32(2): 317-23, 2012 Feb.
Article in Chinese | MEDLINE | ID: mdl-22512160

ABSTRACT

The secondary structure of the mushroom polyphenoloxidase treated by the high hydrostatic pressure (HHP) was analyzed by the synchrotron radiation circular dichroism (SRCD) and Fourier transform infrared spectroscopy (FTIR). The alpha-helix content of mushroom PPO was decreased after HHP treatment, which indicated that the secondary structure of PPO was changed. There was a discrepancy of the result of the secondary structure content between untreated or HHP-treated mushroom PPO analyzed by SRCD and FTIR spectra, and this discrepancy may be due to the different determination temperature, the concentration of the PPO solution and the spectra analysis method etc. The fluorescence spectra showed that the fluorescence intensity of the mushroom PPO was decreased after HHP treatment, and a red shift was observed after HHP treatment, which indicated that the tertiary structure of the enzyme molecule has been modified.


Subject(s)
Agaricales , Catechol Oxidase , Circular Dichroism , Fluorescence , Hydrostatic Pressure , Protein Structure, Secondary , Spectroscopy, Fourier Transform Infrared , Synchrotrons
SELECTION OF CITATIONS
SEARCH DETAIL
...