Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 23(4)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36850705

ABSTRACT

The rehabilitation evaluation of Parkinson's disease has always been the research focus of human assistive systems. It is a research hotspot to objectively and accurately evaluate the gait condition of Parkinson's disease patients, thereby adjusting the actuators of the human-machine system and making rehabilitation robots better adapt to the recovery process of patients. The rehabilitation evaluation of Parkinson's disease has always been the research focus of rehabilitation robots. It is a research hotspot to be able to objectively and accurately evaluate the recovery of Parkinson's disease patients, thereby adjusting the driving module of the human-machine collaboration system in real time, so that rehabilitation robots can better adapt to the recovery process of Parkinson's disease. The gait task in the Unified Parkinson's Disease Rating Scale (UPDRS) is a widely accepted standard for assessing the gait impairments of patients with Parkinson's disease (PD). However, the assessments conducted by neurologists are always subjective and inaccurate, and the results are determined by the neurologists' observation and clinical experience. Thus, in this study, we proposed a novel machine learning-based method of automatically assessing the gait task in UPDRS with wearable sensors as a more convenient and objective alternative means for PD gait assessment. In the design, twelve gait features, including three spatial-temporal features and nine kinematic features, were extracted and calculated from two shank-mounted IMUs. A novel nonlinear model is developed for calculating the score of gait task from the gait features. Twenty-five PD patients and twenty-eight healthy subjects were recruited for validating the proposed method. For comparison purpose, three traditional models, which have been used in previous studies, were also tested by the same dataset. In terms of percentages of participants, 84.9%, 73.6%, 73.6%, and 66.0% of the participants were accurately assigned into the true level with the proposed nonlinear model, the support vector machine model, the naive Bayes model, and the linear regression model, respectively, which indicates that the proposed method has a good performance on calculating the score of the UPDRS gait task and conformance with the rating done by neurologists.


Subject(s)
Automobile Driving , Parkinson Disease , Wearable Electronic Devices , Humans , Parkinson Disease/diagnosis , Bayes Theorem , Gait
2.
IEEE Trans Cybern ; 52(6): 5419-5431, 2022 Jun.
Article in English | MEDLINE | ID: mdl-33232253

ABSTRACT

In this article, we develop a robust sliding-mode nonlinear predictive controller for brain-controlled robots with enhanced performance, safety, and robustness. First, the kinematics and dynamics of a mobile robot are built. After that, the proposed controller is developed by cascading a predictive controller and a smooth sliding-mode controller. The predictive controller integrates the human intention tracking with safety guarantee objectives into an optimization problem to minimize the invasion to human intention while maintaining robot safety. The smooth sliding-mode controller is designed to achieve robust desired velocity tracking. The results of human-in-the-loop simulation and robotic experiments both show the efficacy and robust performance of the proposed controller. This work provides an enabling design to enhance the future research and development of brain-controlled robots.


Subject(s)
Robotics , Algorithms , Biomechanical Phenomena , Brain/diagnostic imaging , Computer Simulation , Humans
3.
J Biomech Eng ; 144(5)2022 05 01.
Article in English | MEDLINE | ID: mdl-34817050

ABSTRACT

Low-friction foot/ground contacts present a particular challenge for stable bipedal walkers. The slippage of the stance foot introduces complexity in robot dynamics and the general locomotion stability results cannot be applied directly. We relax the commonly used assumption of nonslip contact between the walker foot and the ground and examine bipedal dynamics under foot slip. Using a two-mass linear inverted pendulum model, we introduce the concept of balance recoverability and use it to quantify the balanced or fall-prone walking gaits. Balance recoverability also serves as the basis for the design of the balance recovery controller. We design the within- or multi-step recovery controller to assist the walker to avoid fall. The controller performance is validated through simulation results and robustness is demonstrated in the presence of measurement noises as well as variations of foot/ground friction conditions. In addition, the proposed methods and models are used to analyze the data from human walking experiments. The multiple subject experiments validate and illustrate the balance recoverability concept and analyses.


Subject(s)
Foot , Gait , Biomechanical Phenomena , Humans , Locomotion , Postural Balance , Walking
4.
Sensors (Basel) ; 23(1)2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36616835

ABSTRACT

In this study we propose a "hand gesture + face expression" human machine interaction technique, and apply this technique to bedridden rehabilitation robot. "Hand gesture + Facial expression" interactive technology combines the input mode of gesture and facial expression perception. It involves seven basic facial expressions that can be used to determine a target selecting task, while hand gestures are used to control a cursor's location. A controlled experiment was designed and conducted to evaluate the effectiveness of the proposed hybrid technology. A series of target selecting tasks with different target widths and layouts were designed to examine the recognition accuracy of hybrid control gestures. An interactive experiment applied to a rehabilitation robot is designed to verify the feasibility of this interactive technology applied to rehabilitation robots. The experimental results show that the "hand + facial expression" interactive gesture has strong robustness, which can provide a novel guideline for designing applications in VR interfaces, and it can be applied to the rehabilitation robots.


Subject(s)
Robotics , Humans , Facial Expression , Gestures , Upper Extremity , Recognition, Psychology , Hand , Algorithms
5.
IEEE J Biomed Health Inform ; 25(1): 3-12, 2021 01.
Article in English | MEDLINE | ID: mdl-32224469

ABSTRACT

Inertial measurement units (IMU) have been used for gait analysis in many clinical studies, as a more convenient, low cost and less restricted alternative to the laboratory-based motion capture systems or instrumented walkways. Spatial-temporal gait parameters such as gait cycle duration and stride length calculated from the IMUs were often used in these studies for evaluating the impaired gait. However, the spatial-temporal information provided by IMUs is limited, and sometime suffers incomplete and less effective evaluation. In this study, we develop a novel IMU-based method for clinical gait evaluation. Nine gait variables including three spatial-temporal parameters and six kinematic parameters are extracted from two shank-mounted IMUs for quantifying patient's gait deviations. Based on those parameters, an IMU-based gait normalcy index (INI) is derived to evaluate the overall gait performance. Eight inpatient subjects with gait impairments caused by n-hexane neuropathy and ten healthy subjects were recruited. The proposed gait variables and INI were examined on the inpatients at three to five time instants during the rehabilitation process until being discharged. A comparison with healthy subjects and statistical analysis for the changes of gait variables and INI demonstrated that the proposed new set of gait variables and INI can provide adequate and effective information for quantifying gait abnormalities, and help understanding the progress of gait and effectiveness of therapy during rehabilitation process.


Subject(s)
Gait Analysis , Gait , Biomechanical Phenomena , Humans , Leg , Motion
6.
IEEE ASME Trans Mechatron ; 25(4): 1794-1802, 2020.
Article in English | MEDLINE | ID: mdl-33746504

ABSTRACT

High-performance actuators are crucial to enable mechanical versatility of wearable robots, which are required to be lightweight, highly backdrivable, and with high bandwidth. State-of-the-art actuators, e.g., series elastic actuators (SEAs), have to compromise bandwidth to improve compliance (i.e., backdrivability). We describe the design and human-robot interaction modeling of a portable hip exoskeleton based on our custom quasi-direct drive (QDD) actuation (i.e., a high torque density motor with low ratio gear). We also present a model-based performance benchmark comparison of representative actuators in terms of torque capability, control bandwidth, backdrivability, and force tracking accuracy. This paper aims to corroborate the underlying philosophy of "design for control", namely meticulous robot design can simplify control algorithms while ensuring high performance. Following this idea, we create a lightweight bilateral hip exoskeleton to reduce joint loadings during normal activities, including walking and squatting. Experiments indicate that the exoskeleton is able to produce high nominal torque (17.5 Nm), high backdrivability (0.4 Nm backdrive torque), high bandwidth (62.4 Hz), and high control accuracy (1.09 Nm root mean square tracking error, 5.4% of the desired peak torque). Its controller is versatile to assist walking at different speeds and squatting. This work demonstrates performance improvement compared with state-of-the-art exoskeletons.

7.
J Biomech Eng ; 142(4)2020 04 01.
Article in English | MEDLINE | ID: mdl-31513701

ABSTRACT

Carrying heavy loads costs additional energy during walking and leads to fatigue of the user. Conventionally, the load is fixed on the body. Some recent studies showed energy cost reduction when the relative motion of the load with respect to the body was allowed. However, the influences of the load's relative motion on the user are still not fully understood. We employed an optimization-based biped model, which can generate human-like walking motion to study the load-carrier interaction. The relative motion can be achieved by a passive mechanism (such as springs) or a powered mechanism (such as actuators), and the relative motion can occur in the vertical or fore-aft directions. The connection between the load and body is added to the biped model in four scenarios (two types × two directions). The optimization results indicate that the stiffness values affect energy cost differently and the same stiffness value in different directions may have opposite effects. Powered relative motion in either direction can potentially reduce energy cost but the vertical relative motion can achieve a higher reduction than fore-aft relative motion. Surprisingly, powered relative motion only performs marginally better than the passive conditions at similar peak interaction force levels. This work provides insights into developing more economical load-carrying methods and the model presented may be applied to the design and control of wearable load-carrying devices.


Subject(s)
Gait , Biomechanical Phenomena , Humans , Weight-Bearing
8.
Lab Chip ; 18(10): 1494-1503, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29707725

ABSTRACT

The automated sorting and positioning of nanowires and nanotubes is essential to enabling the scalable manufacturing of nanodevices for a variety of applications. However, two fundamental challenges still remain: (i) automated placement of individual nanostructures in precise locations, and (ii) the characterization and sorting of highly variable nanomaterials to construct well-controlled nanodevices. Here, we propose and demonstrate an integrated, electric-field based method for the simultaneous automated characterization, manipulation, and assembly of nanowires (ACMAN) with selectable electrical conductivities into nanodevices. We combine contactless and solution-based electro-orientation spectroscopy and electrophoresis-based motion-control, planning and manipulation strategies to simultaneously characterize and manipulate multiple individual nanowires. These nanowires can be selected according to their electrical characteristics and precisely positioned at different locations in a low-conductivity liquid to form functional nanodevices with desired electrical properties. We validate the ACMAN design by assembling field-effect transistors (FETs) with silicon nanowires of selected electrical conductivities. The design scheme provides a key enabling technology for the scalable, automated sorting and assembly of nanowires and nanotubes to build functional nanodevices.


Subject(s)
Lab-On-A-Chip Devices , Nanotechnology/methods , Nanotubes , Nanowires , Electric Conductivity , Electricity , Equipment Design
9.
J Biomech Eng ; 140(3)2018 03 01.
Article in English | MEDLINE | ID: mdl-29055127

ABSTRACT

Shoe-floor interactions play a crucial role in determining the possibility of potential slip and fall during human walking. Biomechanical and tribological parameters influence the friction characteristics between the shoe sole and the floor and the existing work mainly focus on experimental studies. In this paper, we present modeling, analysis, and experiments to understand slip and force distributions between the shoe sole and floor surface during human walking. We present results for both soft and hard sole material. The computational approaches for slip and friction force distributions are presented using a spring-beam networks model. The model predictions match the experimentally observed sole deformations with large soft sole deformation at the beginning and the end stages of the stance, which indicates the increased risk for slip. The experiments confirm that both the previously reported required coefficient of friction (RCOF) and the deformation measurements in this study can be used to predict slip occurrence. Moreover, the deformation and force distribution results reported in this study provide further understanding and knowledge of slip initiation and termination under various biomechanical conditions.


Subject(s)
Floors and Floorcoverings , Friction , Mechanical Phenomena , Models, Biological , Shoes , Walking , Accidental Falls , Biomechanical Phenomena , Humans
10.
J Biomech ; 49(16): 4150-4153, 2016 12 08.
Article in English | MEDLINE | ID: mdl-27825599

ABSTRACT

An elastically-suspended backpack offers biomechanical benefits by reducing peak interaction force, joint loads and chances of potential injuries as shown in previous studies. But whether it will reduce metabolic cost of the carrier (compared with the stiffly-attached pack) depends on the relation between the natural frequency of the suspension and walking frequency. Yet, no quantitative method can precisely evaluate to what extent the elasticity of suspension affects human walking energetics. We employ a single degree of freedom (DOF) model to quantitatively evaluate the effect of stiffness and damping of pack on human energetics. A surrogate of metabolic cost is proposed and utilized to estimate the energetics difference between carrying backpacks of different stiffness. The predicted difference is consistent with former backpack studies. The analysis reveals that the energy cost increases around the resonant frequency and the difference gets more significant at higher walking speeds or with heavier loads. This method gives closer energetic estimation compared with previous studies. Yet there is potentially an underestimation of the energy difference indicating later models should contain horizontal motion to obtain more precise prediction.


Subject(s)
Models, Biological , Walking , Biomechanical Phenomena , Elasticity , Energy Metabolism , Humans , Weight-Bearing
11.
Lab Chip ; 16(11): 2126-34, 2016 05 24.
Article in English | MEDLINE | ID: mdl-27171977

ABSTRACT

Existing nanowire electrical characterization tools not only are expensive and require sophisticated facilities, but are far too slow to enable statistical characterization of highly variable samples. They are also generally not compatible with further sorting and processing of nanowires. Here, we demonstrate a high-throughput, solution-based electro-orientation-spectroscopy (EOS) method, which is capable of automated electrical characterization of individual nanowires by direct optical visualization of their alignment behavior under spatially uniform electric fields of different frequencies. We demonstrate that EOS can quantitatively characterize the electrical conductivities of nanowires over a 6-order-of-magnitude range (10(-5) to 10 S m(-1), corresponding to typical carrier densities of 10(10)-10(16) cm(-3)), with different fluids used to suspend the nanowires. By implementing EOS in a simple microfluidic device, continuous electrical characterization is achieved, and the sorting of nanowires is demonstrated as a proof-of-concept. With measurement speeds two orders of magnitude faster than direct-contact methods, the automated EOS instrument enables for the first time the statistical characterization of highly variable 1D nanomaterials.

12.
Sensors (Basel) ; 16(4): 430, 2016 Mar 24.
Article in English | MEDLINE | ID: mdl-27023545

ABSTRACT

Real-time detection of contact states, such as stick-slip interaction between a robot and an object on its end effector, is crucial for the robot to grasp and manipulate the object steadily. This paper presents a novel tactile sensor based on electromagnetic induction and its application on stick-slip interaction. An equivalent cantilever-beam model of the tactile sensor was built and capable of constructing the relationship between the sensor output and the friction applied on the sensor. With the tactile sensor, a new method to detect stick-slip interaction on the contact surface between the object and the sensor is proposed based on the characteristics of friction change. Furthermore, a prototype was developed for a typical application, stable wafer transferring on a wafer transfer robot, by considering the spatial magnetic field distribution and the sensor size according to the requirements of wafer transfer. The experimental results validate the sensing mechanism of the tactile sensor and verify its feasibility of detecting stick-slip on the contact surface between the wafer and the sensor. The sensing mechanism also provides a new approach to detect the contact state on the soft-rigid surface in other robot-environment interaction systems.

13.
ACS Nano ; 9(5): 5405-12, 2015 May 26.
Article in English | MEDLINE | ID: mdl-25941841

ABSTRACT

Nanowires of the same composition, and even fabricated within the same batch, often exhibit electrical conductivities that can vary by orders of magnitude. Unfortunately, existing electrical characterization methods are time-consuming, making the statistical survey of highly variable samples essentially impractical. Here, we demonstrate a contactless, solution-based method to efficiently measure the electrical conductivity of 1D nanomaterials based on their transient alignment behavior in ac electric fields of different frequencies. Comparison with direct transport measurements by probe-based scanning tunneling microscopy shows that electro-orientation spectroscopy can quantitatively measure nanowire conductivity over a 5-order-of-magnitude range, 10(-5)-1 Ω(-1) m(-1) (corresponding to resistivities in the range 10(2)-10(7) Ω·cm). With this method, we statistically characterize the conductivity of a variety of nanowires and find significant variability in silicon nanowires grown by metal-assisted chemical etching from the same wafer. We also find that the active carrier concentration of n-type silicon nanowires is greatly reduced by surface traps and that surface passivation increases the effective conductivity by an order of magnitude. This simple method makes electrical characterization of insulating and semiconducting 1D nanomaterials far more efficient and accessible to more researchers than current approaches. Electro-orientation spectroscopy also has the potential to be integrated with other solution-based methods for the high-throughput sorting and manipulation of 1D nanomaterials for postgrowth device assembly.

14.
IEEE Trans Biomed Eng ; 60(9): 2541-51, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23629841

ABSTRACT

Estimation of human pose in physical human-machine interactions such as bicycling is challenging because of highly-dimensional human motion and lack of inexpensive, effective motion sensors. In this paper, we present a computational scheme to estimate both the rider trunk pose and the bicycle roll angle using only inertial and force sensors. The estimation scheme is built on a rider-bicycle dynamic model and the fusion of the wearable inertial sensors and the bicycle force sensors. We take advantages of the attractive properties of the robust force measurements and the motion-sensitive inertial measurements. The rider-bicycle dynamic model provides the underlying relationship between the force and the inertial measurements. The extended Kalman filter-based sensor fusion design fully incorporates the dynamic effects of the force measurements. The performance of the estimation scheme is demonstrated through extensive indoor and outdoor riding experiments.


Subject(s)
Accelerometry/methods , Bicycling/physiology , Fiducial Markers , Models, Theoretical , Movement/physiology , Posture/physiology , Torso/anatomy & histology , Adult , Algorithms , Female , Humans , Image Processing, Computer-Assisted/methods , Male , Mechanical Phenomena , Spine/physiology
15.
Article in English | MEDLINE | ID: mdl-19964538

ABSTRACT

Electro-tactile based rehabilitation systems must be capable of self-tuning to suit the tactile preference of different users. However, tactile preference is difficult to assess in practice. We propose a Takagi-Sugeno-Kang (TSK) fuzzy logic modeling and control approach for the on-line assessment of tactile preference. The method relies on real-time measurements of voltage and power absorbed by the fingertip. Our results show that the fuzzy logic approach successfully models user tactile preference. We are currently developing an electro-tactile based Braille display (E-Braille) for assisting the Blind and Visually Impaired (BVI) that exploits our fuzzy model.


Subject(s)
Electrodes , Fuzzy Logic , Touch , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...