Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
mSphere ; 9(6): e0018224, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38738873

ABSTRACT

The appearance and prevalence of multidrug-resistance (MDR) Gram-negative bacteria (GNB) have limited our antibiotic capacity to control bacterial infections. The clinical efficacy of colistin (COL), considered as the "last resort" for treating GNB infections, has been severely hindered by its increased use as well as the emergence and prevalence of mobile colistin resistance (MCR)-mediated acquired drug resistance. Identifying promising compounds to restore antibiotic activity is becoming an effective strategy to alleviate the crisis of increasing MDR. We first demonstrated that the combination of berberine (BBR) and EDTA substantially restored COL sensitivity against COL-resistant Salmonella and Escherichia coli. Molecular docking indicated that BBR can interact with MCR-1 and the efflux pump system AcrAB-TolC, and BBR combined with EDTA downregulated the expression level of mcr-1 and tolC. Mechanically, BBR combined with EDTA could increase bacterial membrane damage, inhibit the function of multidrug efflux pump, and promote oxidative damage, thereby boosting the action of COL. In addition, transcriptome analysis found that the combination of BBR and EDTA can accelerate the tricarboxylic acid cycle, inhibit cationic antimicrobial peptide (CAMP) resistance, and attenuate Salmonella virulence. Notably, the combination of BBR and EDTA with COL significantly reduced the bacterial load in the liver and spleen of a mice model infected with Salmonella. Our findings revealed that BBR and EDTA can be used as adjuvants collectively with COL to synergistically reverse the COL resistance of bacteria. IMPORTANCE: Colistin is last-resort antibiotic used to treat serious clinical infections caused by MDR bacterial pathogens. The recent emergence of transferable plasmid-mediated COL resistance gene mcr-1 has raised the specter of a rapid worldwide spread of COL resistance. Coupled with the fact of barren antibiotic development pipeline nowadays, a critical approach is to revitalize existing antibiotics using antibiotic adjuvants. Our research showed that berberine combined with EDTA effectively reversed COL resistance both in vivo and in vitro through multiple modes of action. The discovery of berberine in combination with EDTA as a new and safe COL adjuvant provides a therapeutic regimen for combating Gram-negative bacteria infections. Our findings provide a potential therapeutic option using existing antibiotics in combination with antibiotic adjuvants and address the prevalent infections caused by MDR Gram-negative pathogens worldwide.


Subject(s)
Anti-Bacterial Agents , Berberine , Colistin , Edetic Acid , Escherichia coli , Salmonella , Colistin/pharmacology , Berberine/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Anti-Bacterial Agents/pharmacology , Animals , Mice , Edetic Acid/pharmacology , Salmonella/drug effects , Salmonella/genetics , Drug Resistance, Multiple, Bacterial/genetics , Microbial Sensitivity Tests , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Female , Escherichia coli Proteins/genetics , Molecular Docking Simulation , Drug Resistance, Bacterial/genetics , Drug Therapy, Combination , Mice, Inbred BALB C , Drug Synergism
2.
mSphere ; 8(5): e0023423, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37747188

ABSTRACT

The emergence and rapid spread of multi-drug-resistant (MDR) bacteria pose a serious threat to global healthcare. Although the synergistic effect of rafoxanide and colistin was reported, little is known regarding the potential mechanism of this synergy, particularly against chromosomal-mediated colistin-resistant Klebsiella pneumoniae. In the present study, we elucidated the synergistic effect of rafoxanide and colistin against chromosomal-mediated colistin-resistant Klebsiella pneumoniae isolates from human (KP-9) and swine (KP-1) infections. Treatment with 1 mg/L rafoxanide overtly reversed the MIC max to 512-fold. Time-kill assays indicated that rafoxanide acted synergistically with colistin against the growth of KP-1 and KP-9. Mechanistically, we unexpectedly found that the combination destroys the inner-membrane integrity, and ATP synthesis was also quenched, albeit, not via F1F0-ATPase; thereby also inhibiting the activity of efflux pumps. Excessive production of reactive oxygen species (ROS) was also an underlying factor contributing to the bacterial-killing effect of the combination. Transcriptomic analysis unraveled overt heterogeneous expression as treated with both administrations compared with monotherapy. Functional analysis of these differentially expressed genes (DEGs) targeted to the plasma membrane and ATP-binding corroborated phenotypic screening results. These novel findings highlight the synergistic mechanism of rafoxanide in combination with colistin which effectively eradicates chromosomal-mediated colistin-resistant Klebsiella pneumoniae. IMPORTANCE The antimicrobial resistance of Klebsiella pneumoniae caused by the abuse of colistin has increased the difficulty of clinical treatment. A promising combination (i.e., rafoxanide+ colistin) has successfully rescued the antibacterial effect of colistin. However, we still failed to know the potential effect of this combination on chromosome-mediated Klebsiella pneumoniae. Through a series of in vitro experiments, as well as transcriptomic profiling, we confirmed that the MIC of colistin was reduced by rafoxanide by destroying the inner-membrane integrity, quenching ATP synthesis, inhibiting the activity of the efflux pump, and increasing the production of reactive oxygen species. In turn, the expression of relevant colistin resistance genes was down-regulated. Collectively, our study revealed rafoxanide as a promising colistin adjuvant against chromosome-mediated Klebsiella pneumoniae.


Subject(s)
Colistin , Rafoxanide , Humans , Animals , Swine , Colistin/pharmacology , Rafoxanide/pharmacology , Klebsiella pneumoniae , Reactive Oxygen Species , Chromosomes , Adenosine Triphosphate
3.
Int J Antimicrob Agents ; 61(4): 106740, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36736498

ABSTRACT

ICEGpa1804 was identified in the genome of a serovar 2, ST279 isolate EHP1804 carrying eight different resistance genes from 200 Glaesserella parasuis strains isolated from swine with lower respiratory tract infection in seven provinces of China. Susceptibility testing for EHP1804 was determined by broth microdilution, and its genetic profile was determined by whole-genome sequencing. The complete ICEGpa1804 was analysed by polymerase chain reaction, conjugation assay and bioinformatics tools. The conjugation assay was performed using EHP1804 as the donor and G. parasuis V43 (rifampicin-resistant) as the recipient. ICEGpa1804 has a size of 71,880 bp and contains 83 genes, including eight resistance genes [tet(B), blaRob-1, aphA1, strA, strB, aac(3)-IId, catA3 and sul2]. The conjugation assay showed that ICEGpa1804 could be transferred to G. parasuis V43 with frequencies of 4.3 × 10-7. To the best of the authors' knowledge, this is the first study to identify a novel integrative and conjugative element (ICE) carrying eight resistance genes and seven insertion sequence (IS) elements from a G. parasuis isolate. Tn6743, a novel transposon carrying six resistance genes, was identified. Moreover, ISGpa1, a novel IS256 family insertion element, is the first characterized example of a G. parasuis insertion element. Multiple mobile genetic elements involved in resistance genes were located in chromosomal ICEGpa1804, which showed that ICEs may serve as a vital platform for the accumulation of resistance genes.


Subject(s)
Haemophilus parasuis , Respiratory Tract Infections , Animals , Swine , DNA Transposable Elements , Whole Genome Sequencing , China , Haemophilus parasuis/genetics , Conjugation, Genetic
4.
Biomed Pharmacother ; 149: 112873, 2022 May.
Article in English | MEDLINE | ID: mdl-35349932

ABSTRACT

It has been recognized that colistin resistance is a growing problem that seriously impairs the clinical efficacy of colistin against bacterial infections. One strategy that has been proven to have therapeutic effect is to overcome the widespread emergence of antibiotic-resistant pathogens by combining existing antibiotics with promising non-antibiotic agents. In this work, antibiotic susceptibility testing, checkerboard assays and time-kill curves were used to investigate the antibacterial activity of the individual drugs and the potential synergistic activity of the combination. The molecular mechanisms of tetrandrine in combination with colistin were analyzed using fluorometric assay and Real-time PCR. To predict possible interactions between tetrandrine and MCR-1, molecular docking assay was taken. Finally, we evaluated the in vivo efficacy of tetrandrine in combination with colistin against MCR-positive Salmonella. Overall, the combination of tetrandrine and colistin showed significant synergistic activity. In-depth mechanistic analysis showed that the combination of tetrandrine with colistin enhances the membrane-damaging ability of colistin, undermines the functions of proton motive force (PMF) and efflux pumps in MCR-positive bacteria. The results of molecular docking and RT-PCR analyses showed that tetrandrine not only affects the expression of mcr-1 but is also an effective MCR-1 inhibitor. Compared with colistin monotherapy, the combination of tetrandrine with colistin significantly reduced the bacterial load in vivo. Our findings demonstrated that tetrandrine serves as a potential colistin adjuvant against MCR-positive Salmonella.


Subject(s)
Colistin , Escherichia coli Proteins , Anti-Bacterial Agents/pharmacology , Benzylisoquinolines , Colistin/pharmacology , Drug Resistance, Bacterial , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Molecular Docking Simulation , Salmonella/genetics , Salmonella/metabolism
5.
Front Microbiol ; 11: 1884, 2020.
Article in English | MEDLINE | ID: mdl-32903523

ABSTRACT

ICEHpa1 was identified in the genome of a serovar 8 Haemophilus parasuis ST288 isolate YHP170504 from a case of swine lower respiratory tract infection. The aim of the present study was to characterize the integrative conjugative element ICEHpa1 and its multiresistance region. Susceptibility testing was determined by broth microdilution and the complete ICEHpa1 was identified by WGS analysis. The full sequence of ICEHpa1 was analyzed with bioinformatic tools. The presence of ICEHpa1, its circular intermediate and integration site were confirmed by PCR and sequence analysis. Transfer of ICEHpa1 was confirmed by conjugation. ICEHpa1 has a size of 68,922 bp with 37.42% GC content and harbors 81 genes responsible for replication and stabilization, transfer, integration, and accessory functions, as well as seven different resistance genes [bla Rob- 3, tet(B), aphA1, strA, strB, aac(6)'-Ie-aph(2')-Ia, and sul2]. Conjugation experiments showed that ICEHpa1 could be transferred to H. parasuis V43 with frequencies of 6.1 × 10-6. This is the first time a multidrug-resistance ICE has been reported in H. parasuis. Seven different resistance genes were located on a novel integrative conjugative element ICEHpa1, which suggests that the ICEHpa1 is capable of acquiring foreign genes and serving as a carrier for various resistance genes.

SELECTION OF CITATIONS
SEARCH DETAIL
...