Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38998203

ABSTRACT

Boroaluminosilicate (BAS) glasses have excellent chemical durability and mechanical properties and are widely used in the pharmaceutical packaging industry. The corrosion behavior of boroaluminosilicate (BAS) glasses have been investigated for many years; however, the impact of chemical corrosion on mechanical properties of boroaluminosilicate glasses has not been well understood. In this work, the BAS glass samples were corroded in a 20 mM Glycine-NaOH buffer solution (pH = 10) at 80 °C for various durations. Within the corrosion durations, the corrosion of the glass is dominated by congruent dissolution. The results show that the elemental composition and structure of the glass surface are not altered significantly during the congruent dissolution, and the corrosion rate is mainly affected by the Si concentration in the solution. The structural change in the process of micro-crack decay is the main factor affecting the mechanical properties of the glass surface. Corrosion leads to the growth of micro-cracks and tip passivation, which causes the hardness and elastic modulus of the glass to first decrease and then increase. As corrosion proceeds, the microcracks are completely destroyed to form micropores, and the pore size and number increase with the corrosion process, resulting in the decrease in surface mechanical properties again. This work reveals the main influencing factors of congruent dissolution on mechanical properties and provides an important reference for the improvement of pharmaceutical glass strength.

2.
Mater Horiz ; 11(12): 2820-2855, 2024 06 17.
Article in English | MEDLINE | ID: mdl-38567423

ABSTRACT

Polymeric microspheres (PMs) have attracted great attention in the field of biomedicine in the last several decades due to their small particle size, special functionalities shown on the surface and high surface-to-volume ratio. However, how to fabricate PMs which can meet the clinical needs and transform laboratory achievements to industrial scale-up still remains a challenge. Therefore, advanced fabrication technologies are pursued. In this review, we summarize the technologies used to fabricate PMs, including emulsion-based methods, microfluidics, spray drying, coacervation, supercritical fluid and superhydrophobic surface-mediated method and their advantages and disadvantages. We also review the different structures, properties and functions of the PMs and their applications in the fields of drug delivery, cell encapsulation and expansion, scaffolds in tissue engineering, transcatheter arterial embolization and artificial cells. Moreover, we discuss existing challenges and future perspectives for advancing fabrication technologies and biomedical applications of PMs.


Subject(s)
Microspheres , Polymers , Tissue Engineering , Humans , Tissue Engineering/methods , Drug Delivery Systems/methods , Biocompatible Materials , Tissue Scaffolds , Animals , Microfluidics/methods
3.
Nanomicro Lett ; 16(1): 68, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38175452

ABSTRACT

Superhydrophobic surface (SHS) has been well developed, as SHS renders the property of minimizing the water/solid contact interface. Water droplets deposited onto SHS with contact angles exceeding 150°, allow them to retain spherical shapes, and the low adhesion of SHS facilitates easy droplet collection when tilting the substrate. These characteristics make SHS suitable for a wide range of applications. One particularly promising application is the fabrication of microsphere and supraparticle materials. SHS offers a distinct advantage as a universal platform capable of providing customized services for a variety of microspheres and supraparticles. In this review, an overview of the strategies for fabricating microspheres and supraparticles with the aid of SHS, including cross-linking process, polymer melting, and droplet template evaporation methods, is first presented. Then, the applications of microspheres and supraparticles formed onto SHS are discussed in detail, for example, fabricating photonic devices with controllable structures and tunable structural colors, acting as catalysts with emerging or synergetic properties, being integrated into the biomedical field to construct the devices with different medicinal purposes, being utilized for inducing protein crystallization and detecting trace amounts of analytes. Finally, the perspective on future developments involved with this research field is given, along with some obstacles and opportunities.

SELECTION OF CITATIONS
SEARCH DETAIL
...