Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Small Methods ; : e2400304, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38577823

ABSTRACT

Intracerebral hemorrhage (ICH) represents one of the most severe subtypes of stroke. Due to the complexity of the brain injury mechanisms following ICH, there are currently no effective treatments to significantly improve patient functional outcomes. Curcumin, as a potential therapeutic agent for ICH, is limited by its poor water solubility and oral bioavailability. In this study, mPEG-PCL is used to encapsulate curcumin, forming curcumin nanoparticles, and utilized the intranasal administration route to directly deliver curcumin nanoparticles from the nasal cavity to the brain. By inhibiting pro-inflammatory neuroinflammation of microglia following ICH in mice, reprogramming pro-inflammatory microglia toward an anti-inflammatory function, and consequently reducing neuronal inflammatory death and hematoma volume, this approach improved blood-brain barrier damage in ICH mice and promoted the recovery of neurological function post-stroke. This study offers a promising therapeutic strategy for ICH to mediate neuroinflammatory microenvironments.

2.
Small ; : e2400630, 2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38431937

ABSTRACT

Doxorubicin (DOX) is widely used as a chemotherapeutic agent for both hematologic and solid tumors and is a reasonable candidate for glioma treatment. However, its effectiveness is hindered by significant toxicity and drug resistance. Moreover, the presence of the blood-brain barrier (BBB) brings a crucial challenge to glioma therapy. In response, a GSH-responsive and actively targeted nanoprodrug delivery system (cRGD/PSDOX-Cur@NPs) are developed. In this system, a disulfide bond-bridged DOX prodrug (PEG-SS-DOX) is designed to release specifically in the high glutathione (GSH) tumor environment, markedly reducing the cardiotoxicity associated with DOX. To further address DOX resistance, curcumin, serving as a P-glycoprotein (P-gp) inhibitor, effectively increased cellular DOX concentration. Consequently, cRGD/PSDOX-Cur@NPs exhibited synergistic anti-tumor effects in vitro. Furthermore, in vivo experiments validated the superior BBB penetration and brain-targeting abilities of cRGD/PSDOX-Cur@NPs, showcasing the remarkable potential for treating both subcutaneous and orthotopic gliomas. This research underscores that this nanoprodrug delivery system presents a novel approach to inhibiting glioma while addressing resistance and systemic toxicity.

3.
Small Methods ; 8(1): e2301127, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37849248

ABSTRACT

Despite the tremendous progress in cancer treatment in recent decades, cancers often become resistant due to multiple mechanisms, such as intrinsic or acquired multidrug resistance, which leads to unsatisfactory treatment effects or accompanying metastasis and recurrence, ultimately to treatment failure. With a deeper understanding of the molecular mechanisms of tumors, researchers have realized that treatment designs targeting tumor resistance mechanisms would be a promising strategy to break the therapeutic deadlock. Nanodelivery systems have excellent physicochemical properties, including highly efficient tissue-specific delivery, substantial specific surface area, and controllable surface chemistry, which endow nanodelivery systems with capabilities such as precise targeting, deep penetration, responsive drug release, multidrug codelivery, and multimodal synergy, which are currently widely used in biomedical researches and bring a new dawn for overcoming cancer resistance. Based on the mechanisms of tumor therapeutic resistance, this review summarizes the research progress of nanodelivery systems for overcoming tumor resistance to improve therapeutic efficacy in recent years and offers prospects and challenges of the application of nanodelivery systems for overcoming cancer resistance.


Subject(s)
Nanomedicine , Neoplasms , Humans , Drug Resistance, Neoplasm , Nanoparticle Drug Delivery System , Neoplasms/drug therapy , Treatment Failure
SELECTION OF CITATIONS
SEARCH DETAIL
...