Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Environ Res ; 216(Pt 1): 114512, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36208790

ABSTRACT

Anthropogenic activities are intensively affecting the structure and function of biological communities in river ecosystems. The effects of anthropogenic pollution on single-trophic community have been widely explored, but their effects on the structures and co-occurrence patterns of multitrophic communities remain largely unknown. In this study, we collected 13 water samples from the Neijiang River in Chengdu City of China, and identified totally 2352 bacterial, 207 algal, 204 macroinvertebrate, and 33 fish species based on the eDNA metabarcoding to systematically investigate the responses of multitrophic communities to environmental stressors. We observed significant variations in bacterial, algal, and macroinvertebrate community structures (except fish) with the pollution levels in the river. Network analyses indicated a more intensive interspecific co-occurrence pattern at high pollution level. Although taxonomic diversity of the multitrophic communities varied insignificantly, phylogenetic diversities of fish and algae showed significantly positive and negative associations with the pollution levels, respectively. We demonstrated the primary role of environmental filtering in driving the structures of bacteria, algae, and macroinvertebrates, while the fish was more controlled by dispersal limitation. Nitrogen was identified as the most important factor impacting the multitrophic community, where bacterial composition was mostly associated with NO3--N, algal spatial differentiation with TN, and macroinvertebrate and fish with NH4+-N. Further partial least-squares path model confirmed more important effect of environmental variables on the relative abundance of bacteria and algae, while macroinvertebrate and fish communities were directly driven by the algae-mediated pathway in the food web. Our study highlighted the necessity of integrated consideration of multitrophic biodiversity for riverine pollution management, and emphasized the importance of controlling nitrogen inputs targeting a healthy ecosystem.


Subject(s)
DNA, Environmental , Rivers , Animals , Rivers/chemistry , Ecosystem , DNA Barcoding, Taxonomic , Phylogeny , Environmental Monitoring , Biodiversity , Plants , Nitrogen , China
2.
Sci Total Environ ; 854: 158723, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36108830

ABSTRACT

Cyanobacteria and green algae are the OECD recommended test organisms for environmental toxicity assessments of chemicals. Whether the differences in these two species' responses to the identical chemical affect the assessment outcomes is a question worth investigating. Firstly, we investigated the distinct resistance mechanisms of Synechococcus sp. (cyanobacteria) and R. subcapitata (green algae) to sulfamethoxazole (SMX). The antioxidant system analysis demonstrated that R. subcapitata mainly relies on enhancing the activity of first line defense antioxidants, including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), which is the most powerful and efficient response to get rid of ROS, whereas Synechococcus sp. depends upon increasing the activity of glutathione-S-transferase (GST) and GPx to resist oxidative stress. Besides, a total 7 transformation products (TPs) of SMX were identified in R. subcapitata culture medium. The analysis of conjectural transformation pathways and the predicted toxicity indicates that R. subcapitata could relieve SMX toxicity by degrading it to low eco-toxic TPs. Additionally, we summarized numerous exposure data and assessed the environmental risk of various antibiotics, revealing an inconsistent result for the same type of antibiotic by using cyanobacteria and green algae, which is most likely due to the different resistance mechanisms. In the future, modified indicators or comprehensive assessment methods should be considered to improve the rationality of environmental toxicity assessments.


Subject(s)
Chlorophyta , Synechococcus , Water Pollutants, Chemical , Sulfamethoxazole/toxicity , Antioxidants/metabolism , Oxidative Stress , Anti-Bacterial Agents/pharmacology , Chlorophyta/metabolism , Glutathione Peroxidase/metabolism , Water Pollutants, Chemical/toxicity
3.
Toxics ; 10(12)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36548572

ABSTRACT

Antibiotics in aqueous environments can have extremely adverse effects on non-targeted organisms. However, many research projects have only focused on the toxicological evaluation of individual antibiotics in various environments. In the present work, individual and binary mixture toxicity experiments have been conducted with the model organism Raphidocelis subcapitata (R. subcapitata), and a mixture concentration-response curve was established and contrasted with the estimated effects on the basis of both the concentration addition (CA) and the independent action (IA) models. In addition, different risk assessment methods were used and compared to evaluate the environmental risk of binary mixtures. The toxic ranking of the selected antibiotics to R. subcapitata was erythromycin (ERY) > sulfamethoxazole (SMX) > sulfamethazine (SMZ). In general, the conclusion of this study is that the adverse effects of binary mixtures are higher than the individual antibiotics. The CA model and RQSTU are more suitable for toxicity prediction and risk assessment of binary mixtures. This study reveals the potential ecological risks that antibiotics and their mixtures may pose to water ecosystems, thus providing scientific information for environmental quality regulation.

4.
Environ Geochem Health ; 43(8): 3133-3149, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33523329

ABSTRACT

Kashin-Beck disease (KBD) is an endemic disease in China with the highest incidence rate in Tibet region. Promoted generation of oxygen free radicals by semiquinone structure of humic substance (HS) in drinking water was considered to be one of its pathogeneses. Therefore, detailed analysis of HS was performed in water and sediment samples collected from three endemic and three disease-free areas in Changdu Region, Tibet, China. After purification of the HS in the samples, the fractions of HS were characterized using electron paramagnetic resonance, 13C nuclear magnetic resonance, fluorescence spectroscopy with parallel factor analysis and Fourier transform infrared spectroscopy (FTIR). The organic carbon content of HS did not show a significant difference between endemic and disease-free areas or correlation with KBD-associated morbidity. Except FTIR, all techniques succeeded in characterization of the quinone redox system, indicating their validity and consistency. The quinone redox system in aquatic HS exhibited significantly higher level of the following indexes in endemic areas than disease-free areas: semiquinone radical content of fulvic acid (FA) (p < 0.05), aromaticity of FA (p < 0.05), fluorescence intensity (per gram carbon) of reduced quinone-like component of FA (p < 0.05) and humic acid (HA) (p < 0.1). Semiquinone radical content (r = 0.781, p < 0.1), aromaticity of FA (r = 0.891, p < 0.05), intensity of oxidized quinone-like component (r = 0.875, p < 0.05) and reduced quinone-like component of FA (r = 0.793 p < 0.1) showed medium to strong correlation with KBD-associated morbidity. Generally, the content of reduced quinone and aquatic FA showed stronger differences between endemic and disease-free areas than oxidized quinone and aquatic HA, respectively. The quinone redox system in sediment HS did not show any significant relationship with KBD. The present study is a successful attempt to combine the three indexes, semiquinone radical content, aromaticity and fluorescence intensity, in characterizing quinone redox system in HS, facilitating more comprehensive understanding of the characteristics of HS in KBD-affected regions.


Subject(s)
Kashin-Beck Disease , Humans , Humic Substances/analysis , Kashin-Beck Disease/epidemiology , Oxidation-Reduction , Quinones , Tibet
5.
Huan Jing Ke Xue ; 39(9): 4114-4121, 2018 Sep 08.
Article in Chinese | MEDLINE | ID: mdl-30188052

ABSTRACT

Dissolved organic matter(DOM)is an important element of natural aquatic systems. Due to differences in their hydrophobic/hydrophilic properties and various functional groups, chemical appearances of DOM fractions also vary. In this study, seven natural waters, extending from Xiaheyan to Toudaoguai along the Ning-Meng section of the Yellow river, were sampled in April 2015. Four DOM fractions were obtained by pumping through XAD-4 and XAD-8 resins, i.e., hydrophobic acid (HOA), hydrophobic base (HOB), weak hydrophobic acid (WHOA), and hydrophilic matter (HYI). Based on detection by three-dimensional excitation-emission matrix fluorescence (EEM) and correlation analysis, relationships with five metal ions (Pb, Zn, Cu, Cr, As) were analyzed. Results show that DOC gradually increased along an upstream to downstream continuum in the Ning-Meng section. HYI (small molecular proteins) was the main DOM fraction present, followed by HOA, suggesting enhanced microbial-sourced impact from industrial sewage discharges. The significant peaks of humic-like (A, C) and protein-like compounds (T1) in the EEM chart further highlight the effect of endogenous pollution caused by wastewater. Furthermore, SPSS fitting results indicate that DOM is correlated with all five metal ions, especially with Cu. In terms of the four DOM fractions, HYI showed the strongest correlation with Cu, illustrating the significant relationship between HYI and Cu during the migration and transformation process. Moreover, the fluorescence intensity of protein-like compounds decreased with increasing Cu concentration, possibly due to fluorescence quenching caused by complexation between Cu and proteins in HYI.

SELECTION OF CITATIONS
SEARCH DETAIL
...